Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison label_encoder.py @ 11:0380f10c4e04 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
| author | bgruening |
|---|---|
| date | Fri, 30 Apr 2021 23:23:56 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 10:2d890789ac48 | 11:0380f10c4e04 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import warnings | |
| 4 | |
| 5 import numpy as np | |
| 6 import pandas as pd | |
| 7 from sklearn.preprocessing import LabelEncoder | |
| 8 | |
| 9 | |
| 10 def main(inputs, infile, outfile): | |
| 11 """ | |
| 12 Parameter | |
| 13 --------- | |
| 14 input : str | |
| 15 File path to galaxy tool parameter | |
| 16 | |
| 17 infile : str | |
| 18 File paths of input vector | |
| 19 | |
| 20 outfile : str | |
| 21 File path to output vector | |
| 22 | |
| 23 """ | |
| 24 warnings.simplefilter('ignore') | |
| 25 | |
| 26 with open(inputs, 'r') as param_handler: | |
| 27 params = json.load(param_handler) | |
| 28 | |
| 29 input_header = params['header0'] | |
| 30 header = 'infer' if input_header else None | |
| 31 | |
| 32 input_vector = pd.read_csv(infile, sep='\t', header=header) | |
| 33 | |
| 34 le = LabelEncoder() | |
| 35 | |
| 36 output_vector = le.fit_transform(input_vector) | |
| 37 | |
| 38 np.savetxt(outfile, output_vector, fmt="%d", delimiter='\t') | |
| 39 | |
| 40 | |
| 41 if __name__ == '__main__': | |
| 42 aparser = argparse.ArgumentParser() | |
| 43 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 44 aparser.add_argument("-y", "--infile", dest="infile") | |
| 45 aparser.add_argument("-o", "--outfile", dest="outfile") | |
| 46 args = aparser.parse_args() | |
| 47 | |
| 48 main(args.inputs, args.infile, args.outfile) |
