Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison keras_deep_learning.py @ 7:00819b7f2f55 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 756f8be9c3cd437e131e6410cd625c24fe078e8c"
| author | bgruening |
|---|---|
| date | Wed, 22 Jan 2020 12:33:01 +0000 |
| parents | 963e449636d3 |
| children | b8c92e94ac1d |
comparison
equal
deleted
inserted
replaced
| 6:aae4725f152b | 7:00819b7f2f55 |
|---|---|
| 71 "constraint_type": | 71 "constraint_type": |
| 72 "MinMaxNorm" | 72 "MinMaxNorm" |
| 73 } | 73 } |
| 74 """ | 74 """ |
| 75 constraint_type = config['constraint_type'] | 75 constraint_type = config['constraint_type'] |
| 76 if constraint_type == 'None': | 76 if constraint_type in ('None', ''): |
| 77 return None | 77 return None |
| 78 | 78 |
| 79 klass = getattr(keras.constraints, constraint_type) | 79 klass = getattr(keras.constraints, constraint_type) |
| 80 options = config.get('constraint_options', {}) | 80 options = config.get('constraint_options', {}) |
| 81 if 'axis' in options: | 81 if 'axis' in options: |
| 90 | 90 |
| 91 def _handle_layer_parameters(params): | 91 def _handle_layer_parameters(params): |
| 92 """Access to handle all kinds of parameters | 92 """Access to handle all kinds of parameters |
| 93 """ | 93 """ |
| 94 for key, value in six.iteritems(params): | 94 for key, value in six.iteritems(params): |
| 95 if value == 'None': | 95 if value in ('None', ''): |
| 96 params[key] = None | 96 params[key] = None |
| 97 continue | 97 continue |
| 98 | 98 |
| 99 if type(value) in [int, float, bool]\ | 99 if type(value) in [int, float, bool]\ |
| 100 or (type(value) is str and value.isalpha()): | 100 or (type(value) is str and value.isalpha()): |
| 203 Parameters | 203 Parameters |
| 204 ----------- | 204 ----------- |
| 205 config : dictionary, galaxy tool parameters loaded by JSON | 205 config : dictionary, galaxy tool parameters loaded by JSON |
| 206 """ | 206 """ |
| 207 generator_type = config.pop('generator_type') | 207 generator_type = config.pop('generator_type') |
| 208 if generator_type == 'none': | |
| 209 return None | |
| 210 | |
| 208 klass = try_get_attr('galaxy_ml.preprocessors', generator_type) | 211 klass = try_get_attr('galaxy_ml.preprocessors', generator_type) |
| 209 | 212 |
| 210 if generator_type == 'GenomicIntervalBatchGenerator': | 213 if generator_type == 'GenomicIntervalBatchGenerator': |
| 211 config['ref_genome_path'] = 'to_be_determined' | 214 config['ref_genome_path'] = 'to_be_determined' |
| 212 config['intervals_path'] = 'to_be_determined' | 215 config['intervals_path'] = 'to_be_determined' |
| 238 model = get_functional_model(layers_config) | 241 model = get_functional_model(layers_config) |
| 239 | 242 |
| 240 json_string = model.to_json() | 243 json_string = model.to_json() |
| 241 | 244 |
| 242 with open(outfile, 'w') as f: | 245 with open(outfile, 'w') as f: |
| 243 f.write(json_string) | 246 json.dump(json.loads(json_string), f, indent=2) |
| 244 | 247 |
| 245 | 248 |
| 246 def build_keras_model(inputs, outfile, model_json, infile_weights=None, | 249 def build_keras_model(inputs, outfile, model_json, infile_weights=None, |
| 247 batch_mode=False, outfile_params=None): | 250 batch_mode=False, outfile_params=None): |
| 248 """ for `keras_model_builder` tool | 251 """ for `keras_model_builder` tool |
