Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison fitted_model_eval.py @ 35:e38a2675db5e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
| author | bgruening |
|---|---|
| date | Fri, 01 Nov 2019 17:03:46 -0400 |
| parents | |
| children | 006e27f0a7ef |
comparison
equal
deleted
inserted
replaced
| 34:d5d98ed61fa2 | 35:e38a2675db5e |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import pandas as pd | |
| 4 import warnings | |
| 5 | |
| 6 from scipy.io import mmread | |
| 7 from sklearn.pipeline import Pipeline | |
| 8 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 9 from sklearn.model_selection._validation import _score | |
| 10 from galaxy_ml.utils import get_scoring, load_model, read_columns | |
| 11 | |
| 12 | |
| 13 def _get_X_y(params, infile1, infile2): | |
| 14 """ read from inputs and output X and y | |
| 15 | |
| 16 Parameters | |
| 17 ---------- | |
| 18 params : dict | |
| 19 Tool inputs parameter | |
| 20 infile1 : str | |
| 21 File path to dataset containing features | |
| 22 infile2 : str | |
| 23 File path to dataset containing target values | |
| 24 | |
| 25 """ | |
| 26 # store read dataframe object | |
| 27 loaded_df = {} | |
| 28 | |
| 29 input_type = params['input_options']['selected_input'] | |
| 30 # tabular input | |
| 31 if input_type == 'tabular': | |
| 32 header = 'infer' if params['input_options']['header1'] else None | |
| 33 column_option = (params['input_options']['column_selector_options_1'] | |
| 34 ['selected_column_selector_option']) | |
| 35 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 36 'by_header_name', 'all_but_by_header_name']: | |
| 37 c = params['input_options']['column_selector_options_1']['col1'] | |
| 38 else: | |
| 39 c = None | |
| 40 | |
| 41 df_key = infile1 + repr(header) | |
| 42 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 43 parse_dates=True) | |
| 44 loaded_df[df_key] = df | |
| 45 | |
| 46 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 47 # sparse input | |
| 48 elif input_type == 'sparse': | |
| 49 X = mmread(open(infile1, 'r')) | |
| 50 | |
| 51 # Get target y | |
| 52 header = 'infer' if params['input_options']['header2'] else None | |
| 53 column_option = (params['input_options']['column_selector_options_2'] | |
| 54 ['selected_column_selector_option2']) | |
| 55 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 56 'by_header_name', 'all_but_by_header_name']: | |
| 57 c = params['input_options']['column_selector_options_2']['col2'] | |
| 58 else: | |
| 59 c = None | |
| 60 | |
| 61 df_key = infile2 + repr(header) | |
| 62 if df_key in loaded_df: | |
| 63 infile2 = loaded_df[df_key] | |
| 64 else: | |
| 65 infile2 = pd.read_csv(infile2, sep='\t', | |
| 66 header=header, parse_dates=True) | |
| 67 loaded_df[df_key] = infile2 | |
| 68 | |
| 69 y = read_columns( | |
| 70 infile2, | |
| 71 c=c, | |
| 72 c_option=column_option, | |
| 73 sep='\t', | |
| 74 header=header, | |
| 75 parse_dates=True) | |
| 76 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 77 y = y.ravel() | |
| 78 | |
| 79 return X, y | |
| 80 | |
| 81 | |
| 82 def main(inputs, infile_estimator, outfile_eval, | |
| 83 infile_weights=None, infile1=None, | |
| 84 infile2=None): | |
| 85 """ | |
| 86 Parameter | |
| 87 --------- | |
| 88 inputs : str | |
| 89 File path to galaxy tool parameter | |
| 90 | |
| 91 infile_estimator : strgit | |
| 92 File path to trained estimator input | |
| 93 | |
| 94 outfile_eval : str | |
| 95 File path to save the evalulation results, tabular | |
| 96 | |
| 97 infile_weights : str | |
| 98 File path to weights input | |
| 99 | |
| 100 infile1 : str | |
| 101 File path to dataset containing features | |
| 102 | |
| 103 infile2 : str | |
| 104 File path to dataset containing target values | |
| 105 """ | |
| 106 warnings.filterwarnings('ignore') | |
| 107 | |
| 108 with open(inputs, 'r') as param_handler: | |
| 109 params = json.load(param_handler) | |
| 110 | |
| 111 X_test, y_test = _get_X_y(params, infile1, infile2) | |
| 112 | |
| 113 # load model | |
| 114 with open(infile_estimator, 'rb') as est_handler: | |
| 115 estimator = load_model(est_handler) | |
| 116 | |
| 117 main_est = estimator | |
| 118 if isinstance(estimator, Pipeline): | |
| 119 main_est = estimator.steps[-1][-1] | |
| 120 if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): | |
| 121 if not infile_weights or infile_weights == 'None': | |
| 122 raise ValueError("The selected model skeleton asks for weights, " | |
| 123 "but no dataset for weights was provided!") | |
| 124 main_est.load_weights(infile_weights) | |
| 125 | |
| 126 # handle scorer, convert to scorer dict | |
| 127 scoring = params['scoring'] | |
| 128 scorer = get_scoring(scoring) | |
| 129 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
| 130 | |
| 131 if hasattr(estimator, 'evaluate'): | |
| 132 scores = estimator.evaluate(X_test, y_test=y_test, | |
| 133 scorer=scorer, | |
| 134 is_multimetric=True) | |
| 135 else: | |
| 136 scores = _score(estimator, X_test, y_test, scorer, | |
| 137 is_multimetric=True) | |
| 138 | |
| 139 # handle output | |
| 140 for name, score in scores.items(): | |
| 141 scores[name] = [score] | |
| 142 df = pd.DataFrame(scores) | |
| 143 df = df[sorted(df.columns)] | |
| 144 df.to_csv(path_or_buf=outfile_eval, sep='\t', | |
| 145 header=True, index=False) | |
| 146 | |
| 147 | |
| 148 if __name__ == '__main__': | |
| 149 aparser = argparse.ArgumentParser() | |
| 150 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 151 aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") | |
| 152 aparser.add_argument("-w", "--infile_weights", dest="infile_weights") | |
| 153 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 154 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 155 aparser.add_argument("-O", "--outfile_eval", dest="outfile_eval") | |
| 156 args = aparser.parse_args() | |
| 157 | |
| 158 main(args.inputs, args.infile_estimator, args.outfile_eval, | |
| 159 infile_weights=args.infile_weights, infile1=args.infile1, | |
| 160 infile2=args.infile2) |
