Mercurial > repos > bgruening > sklearn_numeric_clustering
comparison main_macros.xml @ 15:d093a5421bba draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 4ed8c4f6ef9ece81797a398b17a99bbaf49a6978
| author | bgruening |
|---|---|
| date | Wed, 30 May 2018 08:20:52 -0400 |
| parents | 9e4bda259863 |
| children | cd661d6d20c4 |
comparison
equal
deleted
inserted
replaced
| 14:9e4bda259863 | 15:d093a5421bba |
|---|---|
| 12 if return_df: | 12 if return_df: |
| 13 return y, data | 13 return y, data |
| 14 else: | 14 else: |
| 15 return y | 15 return y |
| 16 return y | 16 return y |
| 17 </token> | |
| 18 | |
| 19 ## generate an instance for one of sklearn.feature_selection classes | |
| 20 ## must call "@COLUMNS_FUNCTION@" | |
| 21 <token name="@FEATURE_SELECTOR_FUNCTION@"> | |
| 22 def feature_selector(inputs): | |
| 23 selector = inputs["selected_algorithm"] | |
| 24 selector = getattr(sklearn.feature_selection, selector) | |
| 25 options = inputs["options"] | |
| 26 | |
| 27 if inputs['selected_algorithm'] == 'SelectFromModel': | |
| 28 if not options['threshold'] or options['threshold'] == 'None': | |
| 29 options['threshold'] = None | |
| 30 if 'extra_estimator' in inputs and inputs['extra_estimator']['has_estimator'] == 'no_load': | |
| 31 fitted_estimator = pickle.load(open("inputs['extra_estimator']['fitted_estimator']", 'r')) | |
| 32 new_selector = selector(fitted_estimator, prefit=True, **options) | |
| 33 else: | |
| 34 estimator=inputs["estimator"] | |
| 35 if inputs["extra_estimator"]["has_estimator"]=='no': | |
| 36 estimator=inputs["extra_estimator"]["new_estimator"] | |
| 37 estimator=eval(estimator.replace('__dq__', '"').replace("__sq__","'")) | |
| 38 new_selector = selector(estimator, **options) | |
| 39 | |
| 40 elif inputs['selected_algorithm'] in ['RFE', 'RFECV']: | |
| 41 if 'scoring' in options and (not options['scoring'] or options['scoring'] == 'None'): | |
| 42 options['scoring'] = None | |
| 43 estimator=inputs["estimator"] | |
| 44 if inputs["extra_estimator"]["has_estimator"]=='no': | |
| 45 estimator=inputs["extra_estimator"]["new_estimator"] | |
| 46 estimator=eval(estimator.replace('__dq__', '"').replace("__sq__","'")) | |
| 47 new_selector = selector(estimator, **options) | |
| 48 | |
| 49 elif inputs['selected_algorithm'] == "VarianceThreshold": | |
| 50 new_selector = selector(**options) | |
| 51 | |
| 52 else: | |
| 53 score_func = inputs["score_func"] | |
| 54 score_func = getattr(sklearn.feature_selection, score_func) | |
| 55 new_selector = selector(score_func, **options) | |
| 56 | |
| 57 return new_selector | |
| 17 </token> | 58 </token> |
| 18 | 59 |
| 19 <xml name="python_requirements"> | 60 <xml name="python_requirements"> |
| 20 <requirements> | 61 <requirements> |
| 21 <requirement type="package" version="2.7">python</requirement> | 62 <requirement type="package" version="2.7">python</requirement> |
| 792 label="Use a copy of data for precomputing row normalization" help=" "/> | 833 label="Use a copy of data for precomputing row normalization" help=" "/> |
| 793 </section> | 834 </section> |
| 794 </when> | 835 </when> |
| 795 <yield/> | 836 <yield/> |
| 796 </xml> | 837 </xml> |
| 838 <xml name="estimator_input_no_fit"> | |
| 839 <expand macro="feature_selection_estimator" /> | |
| 840 <conditional name="extra_estimator"> | |
| 841 <expand macro="feature_selection_extra_estimator" /> | |
| 842 <expand macro="feature_selection_estimator_choices" /> | |
| 843 </conditional> | |
| 844 </xml> | |
| 797 <xml name="feature_selection_all"> | 845 <xml name="feature_selection_all"> |
| 798 <conditional name="feature_selection_algorithms"> | 846 <conditional name="feature_selection_algorithms"> |
| 799 <param name="selected_algorithm" type="select" label="Select a feature selection algorithm"> | 847 <param name="selected_algorithm" type="select" label="Select a feature selection algorithm"> |
| 800 <option value="SelectFromModel" selected="true">SelectFromModel - Meta-transformer for selecting features based on importance weights</option> | 848 <option value="SelectFromModel" selected="true">SelectFromModel - Meta-transformer for selecting features based on importance weights</option> |
| 801 <option value="GenericUnivariateSelect" selected="true">GenericUnivariateSelect - Univariate feature selector with configurable strategy</option> | 849 <option value="GenericUnivariateSelect" selected="true">GenericUnivariateSelect - Univariate feature selector with configurable strategy</option> |
| 973 | 1021 |
| 974 <xml name="scoring"> | 1022 <xml name="scoring"> |
| 975 <param argument="scoring" type="text" value="" optional="true" label="scoring" help="A metric used to evaluate the estimator"/> | 1023 <param argument="scoring" type="text" value="" optional="true" label="scoring" help="A metric used to evaluate the estimator"/> |
| 976 </xml> | 1024 </xml> |
| 977 | 1025 |
| 978 <xml name="pre_dispatch"> | 1026 <xml name="pre_dispatch" token_type="text" token_default_value="all" token_help="Number of predispatched jobs for parallel execution"> |
| 979 <param argument="pre_dispatch" type="text" value="all" optional="true" label="pre_dispatch" help="Number of predispatched jobs for parallel execution"/> | 1027 <param argument="pre_dispatch" type="@TYPE@" value="@DEFAULT_VALUE@" optional="true" label="pre_dispatch" help="@HELP@"/> |
| 980 </xml> | 1028 </xml> |
| 981 | 1029 |
| 982 <!-- Outputs --> | 1030 <!-- Outputs --> |
| 983 | 1031 |
| 984 <xml name="output"> | 1032 <xml name="output"> |
