Mercurial > repos > bgruening > sklearn_model_validation
comparison model_validation.xml @ 28:e3505cd4ebbf draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
| author | bgruening |
|---|---|
| date | Fri, 30 Apr 2021 23:43:48 +0000 |
| parents | 376c88f35e0e |
| children | fe320a259dbf |
comparison
equal
deleted
inserted
replaced
| 27:376c88f35e0e | 28:e3505cd4ebbf |
|---|---|
| 236 else: | 236 else: |
| 237 rval = pd.DataFrame(predicted) | 237 rval = pd.DataFrame(predicted) |
| 238 elif selected_function == 'learning_curve': | 238 elif selected_function == 'learning_curve': |
| 239 try: | 239 try: |
| 240 train_sizes = safe_eval(options['train_sizes']) | 240 train_sizes = safe_eval(options['train_sizes']) |
| 241 except: | 241 except Exception: |
| 242 sys.exit("Unsupported train_sizes input! Supports int/float in tuple and array-like structure.") | 242 sys.exit("Unsupported train_sizes input! Supports int/float in tuple and array-like structure.") |
| 243 if type(train_sizes) is tuple: | 243 if type(train_sizes) is tuple: |
| 244 train_sizes = np.linspace(*train_sizes) | 244 train_sizes = np.linspace(*train_sizes) |
| 245 options['train_sizes'] = train_sizes | 245 options['train_sizes'] = train_sizes |
| 246 train_sizes_abs, train_scores, test_scores = validator(estimator, X, y, **options) | 246 train_sizes_abs, train_scores, test_scores = validator(estimator, X, y, **options) |
