Mercurial > repos > bgruening > sklearn_generalized_linear
comparison simple_model_fit.py @ 29:d3496640fec0 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
| author | bgruening |
|---|---|
| date | Fri, 01 Nov 2019 16:49:05 -0400 |
| parents | |
| children | c0e3e32f0801 |
comparison
equal
deleted
inserted
replaced
| 28:7200a86765da | 29:d3496640fec0 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import pandas as pd | |
| 4 import pickle | |
| 5 | |
| 6 from galaxy_ml.utils import load_model, read_columns | |
| 7 from sklearn.pipeline import Pipeline | |
| 8 | |
| 9 | |
| 10 def _get_X_y(params, infile1, infile2): | |
| 11 """ read from inputs and output X and y | |
| 12 | |
| 13 Parameters | |
| 14 ---------- | |
| 15 params : dict | |
| 16 Tool inputs parameter | |
| 17 infile1 : str | |
| 18 File path to dataset containing features | |
| 19 infile2 : str | |
| 20 File path to dataset containing target values | |
| 21 | |
| 22 """ | |
| 23 # store read dataframe object | |
| 24 loaded_df = {} | |
| 25 | |
| 26 input_type = params['input_options']['selected_input'] | |
| 27 # tabular input | |
| 28 if input_type == 'tabular': | |
| 29 header = 'infer' if params['input_options']['header1'] else None | |
| 30 column_option = (params['input_options']['column_selector_options_1'] | |
| 31 ['selected_column_selector_option']) | |
| 32 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 33 'by_header_name', 'all_but_by_header_name']: | |
| 34 c = params['input_options']['column_selector_options_1']['col1'] | |
| 35 else: | |
| 36 c = None | |
| 37 | |
| 38 df_key = infile1 + repr(header) | |
| 39 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 40 parse_dates=True) | |
| 41 loaded_df[df_key] = df | |
| 42 | |
| 43 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 44 # sparse input | |
| 45 elif input_type == 'sparse': | |
| 46 X = mmread(open(infile1, 'r')) | |
| 47 | |
| 48 # Get target y | |
| 49 header = 'infer' if params['input_options']['header2'] else None | |
| 50 column_option = (params['input_options']['column_selector_options_2'] | |
| 51 ['selected_column_selector_option2']) | |
| 52 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 53 'by_header_name', 'all_but_by_header_name']: | |
| 54 c = params['input_options']['column_selector_options_2']['col2'] | |
| 55 else: | |
| 56 c = None | |
| 57 | |
| 58 df_key = infile2 + repr(header) | |
| 59 if df_key in loaded_df: | |
| 60 infile2 = loaded_df[df_key] | |
| 61 else: | |
| 62 infile2 = pd.read_csv(infile2, sep='\t', | |
| 63 header=header, parse_dates=True) | |
| 64 loaded_df[df_key] = infile2 | |
| 65 | |
| 66 y = read_columns( | |
| 67 infile2, | |
| 68 c=c, | |
| 69 c_option=column_option, | |
| 70 sep='\t', | |
| 71 header=header, | |
| 72 parse_dates=True) | |
| 73 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 74 y = y.ravel() | |
| 75 | |
| 76 return X, y | |
| 77 | |
| 78 | |
| 79 def main(inputs, infile_estimator, infile1, infile2, out_object, | |
| 80 out_weights=None): | |
| 81 """ main | |
| 82 | |
| 83 Parameters | |
| 84 ---------- | |
| 85 inputs : str | |
| 86 File path to galaxy tool parameter | |
| 87 | |
| 88 infile_estimator : str | |
| 89 File paths of input estimator | |
| 90 | |
| 91 infile1 : str | |
| 92 File path to dataset containing features | |
| 93 | |
| 94 infile2 : str | |
| 95 File path to dataset containing target labels | |
| 96 | |
| 97 out_object : str | |
| 98 File path for output of fitted model or skeleton | |
| 99 | |
| 100 out_weights : str | |
| 101 File path for output of weights | |
| 102 | |
| 103 """ | |
| 104 with open(inputs, 'r') as param_handler: | |
| 105 params = json.load(param_handler) | |
| 106 | |
| 107 # load model | |
| 108 with open(infile_estimator, 'rb') as est_handler: | |
| 109 estimator = load_model(est_handler) | |
| 110 | |
| 111 X_train, y_train = _get_X_y(params, infile1, infile2) | |
| 112 | |
| 113 estimator.fit(X_train, y_train) | |
| 114 | |
| 115 main_est = estimator | |
| 116 if isinstance(main_est, Pipeline): | |
| 117 main_est = main_est.steps[-1][-1] | |
| 118 if hasattr(main_est, 'model_') \ | |
| 119 and hasattr(main_est, 'save_weights'): | |
| 120 if out_weights: | |
| 121 main_est.save_weights(out_weights) | |
| 122 del main_est.model_ | |
| 123 del main_est.fit_params | |
| 124 del main_est.model_class_ | |
| 125 del main_est.validation_data | |
| 126 if getattr(main_est, 'data_generator_', None): | |
| 127 del main_est.data_generator_ | |
| 128 | |
| 129 with open(out_object, 'wb') as output_handler: | |
| 130 pickle.dump(estimator, output_handler, | |
| 131 pickle.HIGHEST_PROTOCOL) | |
| 132 | |
| 133 | |
| 134 if __name__ == '__main__': | |
| 135 aparser = argparse.ArgumentParser() | |
| 136 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 137 aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator") | |
| 138 aparser.add_argument("-y", "--infile1", dest="infile1") | |
| 139 aparser.add_argument("-g", "--infile2", dest="infile2") | |
| 140 aparser.add_argument("-o", "--out_object", dest="out_object") | |
| 141 aparser.add_argument("-t", "--out_weights", dest="out_weights") | |
| 142 args = aparser.parse_args() | |
| 143 | |
| 144 main(args.inputs, args.infile_estimator, args.infile1, | |
| 145 args.infile2, args.out_object, args.out_weights) |
