view fitted_model_eval.xml @ 9:24cc00990e27 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 8850f42c2c3763e614f7454c9c006f3d2ff572c0
author bgruening
date Fri, 27 May 2022 11:20:36 +0000
parents 981c7b89af13
children ed5472c523fa
line wrap: on
line source

<tool id="sklearn_fitted_model_eval" name="Evaluate a Fitted Model" version="@VERSION@" profile="20.05">
    <description>using a new batch of labeled data</description>
    <macros>
        <import>main_macros.xml</import>
        <import>keras_macros.xml</import>
    </macros>
    <expand macro="python_requirements" />
    <expand macro="macro_stdio" />
    <version_command>echo "@VERSION@"</version_command>
    <command>
        <![CDATA[
        export HDF5_USE_FILE_LOCKING='FALSE';
        python '$__tool_directory__/fitted_model_eval.py'
            --inputs '$inputs'
            --infile_estimator '$infile_estimator'
            --outfile_eval '$outfile_eval'
            --infile_weights '$infile_weights'
            --infile1 '$input_options.infile1'
            --infile2 '$input_options.infile2'
        ]]>
    </command>
    <configfiles>
        <inputs name="inputs" />
    </configfiles>
    <inputs>
        <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing pipeline/estimator object" />
        <param name="infile_weights" type="data" format="h5" optional="true" label="Choose the dataset containing weights for the estimator above" help="Optional. For deep learning only." />
        <expand macro="scoring_selection" />
        <conditional name="input_options">
            <expand macro="data_input_options" />
            <when value="tabular">
                <expand macro="samples_tabular" label1="Dataset containing features:" multiple1="true" multiple2="false" />
            </when>
            <when value="sparse">
                <expand macro="sparse_target" />
            </when>
        </conditional>
    </inputs>
    <outputs>
        <data format="tabular" name="outfile_eval" />
    </outputs>
    <tests>
        <test>
            <param name="infile_estimator" value="searchCV01" ftype="zip" />
            <conditional name="scoring">
                <param name="primary_scoring" value="r2" />
            </conditional>
            <param name="infile1" value="train_test_split_test01.tabular" ftype="tabular" />
            <param name="header1" value="true" />
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" />
            <param name="infile2" value="regression_y_split_test01.tabular" ftype="tabular" />
            <param name="header2" value="true" />
            <param name="col2" value="1" />
            <output name="outfile_eval" file="fitted_model_eval01.tabular" />
        </test>
    </tests>
    <help>
        <![CDATA[
**What it does**

Given a fitted estimator and a labeled dataset, this tool outputs the performances of the fitted estimator on the labeled dataset with selected scorers.

For the estimator, this tool supports fitted sklearn estimators (pickled) and trained deep learning models (model skeleton + weights). For input datasets, it supports the following:

- tabular

- sparse


**Output**

A tabular file containing performance scores,
e.g.:

======== ======== =========
accuracy f1_macro precision
======== ======== =========
 0.8613   0.6759   0.7928
======== ======== =========

        ]]>
    </help>
    <expand macro="sklearn_citation">
        <expand macro="keras_citation" />
        <expand macro="selene_citation" />
    </expand>
</tool>