Mercurial > repos > bgruening > sklearn_fitted_model_eval
comparison ml_visualization_ex.py @ 13:21dccb45999c draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 80417bf0158a9b596e485dd66408f738f405145a
| author | bgruening |
|---|---|
| date | Mon, 02 Oct 2023 09:00:28 +0000 |
| parents | ed5472c523fa |
| children |
comparison
equal
deleted
inserted
replaced
| 12:9d067f053602 | 13:21dccb45999c |
|---|---|
| 13 from galaxy_ml.utils import read_columns, SafeEval | 13 from galaxy_ml.utils import read_columns, SafeEval |
| 14 from sklearn.feature_selection._base import SelectorMixin | 14 from sklearn.feature_selection._base import SelectorMixin |
| 15 from sklearn.metrics import ( | 15 from sklearn.metrics import ( |
| 16 auc, | 16 auc, |
| 17 average_precision_score, | 17 average_precision_score, |
| 18 confusion_matrix, | |
| 18 precision_recall_curve, | 19 precision_recall_curve, |
| 19 roc_curve, | 20 roc_curve, |
| 20 ) | 21 ) |
| 21 from sklearn.pipeline import Pipeline | 22 from sklearn.pipeline import Pipeline |
| 22 from tensorflow.keras.models import model_from_json | 23 from tensorflow.keras.models import model_from_json |
| 256 folder = os.getcwd() | 257 folder = os.getcwd() |
| 257 plt.savefig(os.path.join(folder, "output.svg"), format="svg") | 258 plt.savefig(os.path.join(folder, "output.svg"), format="svg") |
| 258 os.rename(os.path.join(folder, "output.svg"), os.path.join(folder, "output")) | 259 os.rename(os.path.join(folder, "output.svg"), os.path.join(folder, "output")) |
| 259 | 260 |
| 260 | 261 |
| 262 def get_dataframe(file_path, plot_selection, header_name, column_name): | |
| 263 header = "infer" if plot_selection[header_name] else None | |
| 264 column_option = plot_selection[column_name]["selected_column_selector_option"] | |
| 265 if column_option in [ | |
| 266 "by_index_number", | |
| 267 "all_but_by_index_number", | |
| 268 "by_header_name", | |
| 269 "all_but_by_header_name", | |
| 270 ]: | |
| 271 col = plot_selection[column_name]["col1"] | |
| 272 else: | |
| 273 col = None | |
| 274 _, input_df = read_columns( | |
| 275 file_path, | |
| 276 c=col, | |
| 277 c_option=column_option, | |
| 278 return_df=True, | |
| 279 sep="\t", | |
| 280 header=header, | |
| 281 parse_dates=True, | |
| 282 ) | |
| 283 return input_df | |
| 284 | |
| 285 | |
| 261 def main( | 286 def main( |
| 262 inputs, | 287 inputs, |
| 263 infile_estimator=None, | 288 infile_estimator=None, |
| 264 infile1=None, | 289 infile1=None, |
| 265 infile2=None, | 290 infile2=None, |
| 269 ref_seq=None, | 294 ref_seq=None, |
| 270 intervals=None, | 295 intervals=None, |
| 271 targets=None, | 296 targets=None, |
| 272 fasta_path=None, | 297 fasta_path=None, |
| 273 model_config=None, | 298 model_config=None, |
| 299 true_labels=None, | |
| 300 predicted_labels=None, | |
| 301 plot_color=None, | |
| 302 title=None, | |
| 274 ): | 303 ): |
| 275 """ | 304 """ |
| 276 Parameter | 305 Parameter |
| 277 --------- | 306 --------- |
| 278 inputs : str | 307 inputs : str |
| 309 fasta_path : str, default is None | 338 fasta_path : str, default is None |
| 310 File path to dataset containing fasta file | 339 File path to dataset containing fasta file |
| 311 | 340 |
| 312 model_config : str, default is None | 341 model_config : str, default is None |
| 313 File path to dataset containing JSON config for neural networks | 342 File path to dataset containing JSON config for neural networks |
| 343 | |
| 344 true_labels : str, default is None | |
| 345 File path to dataset containing true labels | |
| 346 | |
| 347 predicted_labels : str, default is None | |
| 348 File path to dataset containing true predicted labels | |
| 349 | |
| 350 plot_color : str, default is None | |
| 351 Color of the confusion matrix heatmap | |
| 352 | |
| 353 title : str, default is None | |
| 354 Title of the confusion matrix heatmap | |
| 314 """ | 355 """ |
| 315 warnings.simplefilter("ignore") | 356 warnings.simplefilter("ignore") |
| 316 | 357 |
| 317 with open(inputs, "r") as param_handler: | 358 with open(inputs, "r") as param_handler: |
| 318 params = json.load(param_handler) | 359 params = json.load(param_handler) |
| 532 plot_model(model, to_file="output.png") | 573 plot_model(model, to_file="output.png") |
| 533 os.rename("output.png", "output") | 574 os.rename("output.png", "output") |
| 534 | 575 |
| 535 return 0 | 576 return 0 |
| 536 | 577 |
| 578 elif plot_type == "classification_confusion_matrix": | |
| 579 plot_selection = params["plotting_selection"] | |
| 580 input_true = get_dataframe( | |
| 581 true_labels, plot_selection, "header_true", "column_selector_options_true" | |
| 582 ) | |
| 583 header_predicted = "infer" if plot_selection["header_predicted"] else None | |
| 584 input_predicted = pd.read_csv( | |
| 585 predicted_labels, sep="\t", parse_dates=True, header=header_predicted | |
| 586 ) | |
| 587 true_classes = input_true.iloc[:, -1].copy() | |
| 588 predicted_classes = input_predicted.iloc[:, -1].copy() | |
| 589 axis_labels = list(set(true_classes)) | |
| 590 c_matrix = confusion_matrix(true_classes, predicted_classes) | |
| 591 fig, ax = plt.subplots(figsize=(7, 7)) | |
| 592 im = plt.imshow(c_matrix, cmap=plot_color) | |
| 593 for i in range(len(c_matrix)): | |
| 594 for j in range(len(c_matrix)): | |
| 595 ax.text(j, i, c_matrix[i, j], ha="center", va="center", color="k") | |
| 596 ax.set_ylabel("True class labels") | |
| 597 ax.set_xlabel("Predicted class labels") | |
| 598 ax.set_title(title) | |
| 599 ax.set_xticks(axis_labels) | |
| 600 ax.set_yticks(axis_labels) | |
| 601 fig.colorbar(im, ax=ax) | |
| 602 fig.tight_layout() | |
| 603 plt.savefig("output.png", dpi=125) | |
| 604 os.rename("output.png", "output") | |
| 605 | |
| 606 return 0 | |
| 607 | |
| 537 # save pdf file to disk | 608 # save pdf file to disk |
| 538 # fig.write_image("image.pdf", format='pdf') | 609 # fig.write_image("image.pdf", format='pdf') |
| 539 # fig.write_image("image.pdf", format='pdf', width=340*2, height=226*2) | 610 # fig.write_image("image.pdf", format='pdf', width=340*2, height=226*2) |
| 540 | 611 |
| 541 | 612 |
| 551 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | 622 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") |
| 552 aparser.add_argument("-b", "--intervals", dest="intervals") | 623 aparser.add_argument("-b", "--intervals", dest="intervals") |
| 553 aparser.add_argument("-t", "--targets", dest="targets") | 624 aparser.add_argument("-t", "--targets", dest="targets") |
| 554 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 625 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") |
| 555 aparser.add_argument("-c", "--model_config", dest="model_config") | 626 aparser.add_argument("-c", "--model_config", dest="model_config") |
| 627 aparser.add_argument("-tl", "--true_labels", dest="true_labels") | |
| 628 aparser.add_argument("-pl", "--predicted_labels", dest="predicted_labels") | |
| 629 aparser.add_argument("-pc", "--plot_color", dest="plot_color") | |
| 630 aparser.add_argument("-pt", "--title", dest="title") | |
| 556 args = aparser.parse_args() | 631 args = aparser.parse_args() |
| 557 | 632 |
| 558 main( | 633 main( |
| 559 args.inputs, | 634 args.inputs, |
| 560 args.infile_estimator, | 635 args.infile_estimator, |
| 566 ref_seq=args.ref_seq, | 641 ref_seq=args.ref_seq, |
| 567 intervals=args.intervals, | 642 intervals=args.intervals, |
| 568 targets=args.targets, | 643 targets=args.targets, |
| 569 fasta_path=args.fasta_path, | 644 fasta_path=args.fasta_path, |
| 570 model_config=args.model_config, | 645 model_config=args.model_config, |
| 646 true_labels=args.true_labels, | |
| 647 predicted_labels=args.predicted_labels, | |
| 648 plot_color=args.plot_color, | |
| 649 title=args.title, | |
| 571 ) | 650 ) |
