Mercurial > repos > bgruening > sklearn_ensemble
comparison ensemble.xml @ 4:3bc536788043 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit 0e582cf1f3134c777cce3aa57d71b80ed95e6ba9
| author | bgruening |
|---|---|
| date | Fri, 16 Feb 2018 09:14:03 -0500 |
| parents | a92c5991d959 |
| children | 4c2fae2db5d1 |
comparison
equal
deleted
inserted
replaced
| 3:efbacdceaa7e | 4:3bc536788043 |
|---|---|
| 48 estimator.fit(X,y) | 48 estimator.fit(X,y) |
| 49 pickle.dump(estimator,open("$outfile_fit", 'w+'), pickle.HIGHEST_PROTOCOL) | 49 pickle.dump(estimator,open("$outfile_fit", 'w+'), pickle.HIGHEST_PROTOCOL) |
| 50 | 50 |
| 51 #else: | 51 #else: |
| 52 classifier_object = pickle.load(open("$selected_tasks.infile_model", 'r')) | 52 classifier_object = pickle.load(open("$selected_tasks.infile_model", 'r')) |
| 53 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=None, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) | 53 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) |
| 54 prediction = classifier_object.predict(data) | 54 prediction = classifier_object.predict(data) |
| 55 prediction_df = pandas.DataFrame(prediction) | 55 prediction_df = pandas.DataFrame(prediction) |
| 56 res = pandas.concat([data, prediction_df], axis=1) | 56 res = pandas.concat([data, prediction_df], axis=1) |
| 57 res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False) | 57 res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False) |
| 58 #end if | 58 #end if |
| 129 <expand macro="random_state"/> | 129 <expand macro="random_state"/> |
| 130 </section> | 130 </section> |
| 131 </when> | 131 </when> |
| 132 </expand> | 132 </expand> |
| 133 </inputs> | 133 </inputs> |
| 134 <outputs> | 134 |
| 135 <data format="tabular" name="outfile_predict"> | 135 <expand macro="output"/> |
| 136 <filter>selected_tasks['selected_task'] == 'load'</filter> | 136 |
| 137 </data> | |
| 138 <data format="zip" name="outfile_fit"> | |
| 139 <filter>selected_tasks['selected_task'] == 'train'</filter> | |
| 140 </data> | |
| 141 </outputs> | |
| 142 <tests> | 137 <tests> |
| 143 <test> | 138 <test> |
| 144 <param name="infile1" value="train.tabular" ftype="tabular"/> | 139 <param name="infile1" value="train.tabular" ftype="tabular"/> |
| 145 <param name="infile2" value="train.tabular" ftype="tabular"/> | 140 <param name="infile2" value="train.tabular" ftype="tabular"/> |
| 146 <param name="col1" value="1,2,3,4"/> | 141 <param name="col1" value="1,2,3,4"/> |
| 152 </test> | 147 </test> |
| 153 <test> | 148 <test> |
| 154 <param name="infile_model" value="rfc_model01" ftype="zip"/> | 149 <param name="infile_model" value="rfc_model01" ftype="zip"/> |
| 155 <param name="infile_data" value="test.tabular" ftype="tabular"/> | 150 <param name="infile_data" value="test.tabular" ftype="tabular"/> |
| 156 <param name="selected_task" value="load"/> | 151 <param name="selected_task" value="load"/> |
| 157 <output name="outfile_predict" file="rfc_result01"/> | 152 <output name="outfile_predict" file="rfc_result01" compare="sim_size" delta="500"/> |
| 158 </test> | 153 </test> |
| 159 | 154 |
| 160 <test> | 155 <test> |
| 161 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 156 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> |
| 162 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 157 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> |
| 169 </test> | 164 </test> |
| 170 <test> | 165 <test> |
| 171 <param name="infile_model" value="rfr_model01" ftype="zip"/> | 166 <param name="infile_model" value="rfr_model01" ftype="zip"/> |
| 172 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> | 167 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> |
| 173 <param name="selected_task" value="load"/> | 168 <param name="selected_task" value="load"/> |
| 174 <output name="outfile_predict" file="rfr_result01"/> | 169 <output name="outfile_predict" file="rfr_result01" compare="sim_size" delta="500"/> |
| 175 </test> | 170 </test> |
| 176 </tests> | 171 </tests> |
| 177 <help><![CDATA[ | 172 <help><![CDATA[ |
| 178 ***What it does*** | 173 ***What it does*** |
| 179 The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. This tool offers two sets of ensemble algorithms for classification and regression: random forests and ADA boosting which are based on sklearn.ensemble library from Scikit-learn. Here you can find out about the input, output and methods presented in the tools. For information about ensemble methods and parameters settings please refer to `Scikit-learn ensemble`_. | 174 The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. This tool offers two sets of ensemble algorithms for classification and regression: random forests and ADA boosting which are based on sklearn.ensemble library from Scikit-learn. Here you can find out about the input, output and methods presented in the tools. For information about ensemble methods and parameters settings please refer to `Scikit-learn ensemble`_. |
| 184 There are two groups of operations available: | 179 There are two groups of operations available: |
| 185 | 180 |
| 186 1 - Train a model : A training set containing samples and their respective labels (or predicted values) are input. Based on the selected algorithm and options, an estimator object is fit to the data and is returned. | 181 1 - Train a model : A training set containing samples and their respective labels (or predicted values) are input. Based on the selected algorithm and options, an estimator object is fit to the data and is returned. |
| 187 | 182 |
| 188 2 - Load a model and predict : An existing model predicts the class labels (or regression values) for a new dataset. | 183 2 - Load a model and predict : An existing model predicts the class labels (or regression values) for a new dataset. |
| 189 | 184 |
| 190 **2 - Trainig input** | 185 **2 - Trainig input** |
| 191 When you choose to train a model, you need a features dataset X and a labels set y. This tool expects tabular or sparse data for X and a single column for y (tabular). You can select a subset of columns in a tabular dataset as your features dataset or labels column. Below you find some examples: | 186 When you choose to train a model, you need a features dataset X and a labels set y. This tool expects tabular or sparse data for X and a single column for y (tabular). You can select a subset of columns in a tabular dataset as your features dataset or labels column. Below you find some examples: |
| 192 | 187 |
| 193 **Sample tabular features dataset** | 188 **Sample tabular features dataset** |
| 194 The following training dataset contains 3 feature columns and a column containing class labels. You can simply select the first 3 columns as features and the last column as labels: | 189 The following training dataset contains 3 feature columns and a column containing class labels. You can simply select the first 3 columns as features and the last column as labels: |
| 195 | 190 |
| 196 :: | 191 :: |
| 197 | 192 |
| 198 4.01163365529 -6.10797684314 8.29829894763 1 | 193 4.01163365529 -6.10797684314 8.29829894763 1 |
| 199 10.0788438916 1.59539821454 10.0684278289 0 | 194 10.0788438916 1.59539821454 10.0684278289 0 |
| 200 -5.17607775503 -0.878286135332 6.92941850665 2 | 195 -5.17607775503 -0.878286135332 6.92941850665 2 |
| 201 4.00975406235 -7.11847496542 9.3802423585 1 | 196 4.00975406235 -7.11847496542 9.3802423585 1 |
| 202 4.61204065139 -5.71217537352 9.12509610964 1 | 197 4.61204065139 -5.71217537352 9.12509610964 1 |
| 203 | 198 |
| 204 | 199 |
| 205 **Sample sparse features dataset** | 200 **Sample sparse features dataset** |
| 206 In this case you cannot specifiy a column range. | 201 In this case you cannot specifiy a column range. |
| 207 | 202 |
| 208 :: | 203 :: |
| 209 | 204 |
| 210 4 1048577 8738 | 205 4 1048577 8738 |
| 211 1 271 0.02083333333333341 | 206 1 271 0.02083333333333341 |
| 212 1 1038 0.02461995616119806 | 207 1 1038 0.02461995616119806 |
| 213 2 829017 0.01629088031127686 | 208 2 829017 0.01629088031127686 |
| 214 2 829437 0.01209127083516686 | 209 2 829437 0.01209127083516686 |
| 224 **2 - Trainig output** | 219 **2 - Trainig output** |
| 225 The trained model is generated and output in the form of a binary file. | 220 The trained model is generated and output in the form of a binary file. |
| 226 | 221 |
| 227 | 222 |
| 228 **3 - Prediction input** | 223 **3 - Prediction input** |
| 229 | 224 |
| 230 When you choose to load a model and do prediction, the tool expects an already trained estimator and a tabular dataset as input. The dataset contains new samples which you want to classify or predict regression values for. | 225 When you choose to load a model and do prediction, the tool expects an already trained estimator and a tabular dataset as input. The dataset contains new samples which you want to classify or predict regression values for. |
| 231 | 226 |
| 232 | 227 |
| 233 .. class:: warningmark | 228 .. class:: warningmark |
| 234 | 229 |
| 235 The number of feature columns must be the same in training and prediction datasets! | 230 The number of feature columns must be the same in training and prediction datasets! |
| 236 | 231 |
| 237 | 232 |
| 238 **3 - Prediction output** | 233 **3 - Prediction output** |
| 239 The tool predicts the class labels for new samples and adds them as the last column to the prediction dataset. The new dataset then is output as a tabular file. The prediction output format should look like the training dataset. | 234 The tool predicts the class labels for new samples and adds them as the last column to the prediction dataset. The new dataset then is output as a tabular file. The prediction output format should look like the training dataset. |
| 240 | 235 |
| 241 ]]></help> | 236 ]]></help> |
| 242 <expand macro="sklearn_citation"/> | 237 <expand macro="sklearn_citation"/> |
| 243 </tool> | 238 </tool> |
