Mercurial > repos > bgruening > sklearn_clf_metrics
comparison model_prediction.py @ 32:e801d2034575 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
| author | bgruening |
|---|---|
| date | Mon, 16 Dec 2019 09:56:33 +0000 |
| parents | c077c537cb67 |
| children | 3c5034b0d775 |
comparison
equal
deleted
inserted
replaced
| 31:cb9a641207ec | 32:e801d2034575 |
|---|---|
| 1 import argparse | 1 import argparse |
| 2 import json | 2 import json |
| 3 import numpy as np | 3 import numpy as np |
| 4 import pandas as pd | 4 import pandas as pd |
| 5 import tabix | |
| 6 import warnings | 5 import warnings |
| 7 | 6 |
| 8 from scipy.io import mmread | 7 from scipy.io import mmread |
| 9 from sklearn.pipeline import Pipeline | 8 from sklearn.pipeline import Pipeline |
| 10 | 9 |
| 11 from galaxy_ml.externals.selene_sdk.sequences import Genome | |
| 12 from galaxy_ml.utils import (load_model, read_columns, | 10 from galaxy_ml.utils import (load_model, read_columns, |
| 13 get_module, try_get_attr) | 11 get_module, try_get_attr) |
| 14 | 12 |
| 15 | 13 |
| 16 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | 14 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) |
| 136 options['blacklist_regions'] = None | 134 options['blacklist_regions'] = None |
| 137 | 135 |
| 138 pred_data_generator = klass( | 136 pred_data_generator = klass( |
| 139 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) | 137 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) |
| 140 | 138 |
| 141 pred_data_generator.fit() | 139 pred_data_generator.set_processing_attrs() |
| 142 | 140 |
| 143 variants = pred_data_generator.variants | 141 variants = pred_data_generator.variants |
| 144 # TODO : remove the following block after galaxy-ml v0.7.13 | 142 |
| 145 blacklist_tabix = getattr(pred_data_generator.reference_genome_, | |
| 146 '_blacklist_tabix', None) | |
| 147 clean_variants = [] | |
| 148 if blacklist_tabix: | |
| 149 start_radius = pred_data_generator.start_radius_ | |
| 150 end_radius = pred_data_generator.end_radius_ | |
| 151 | |
| 152 for chrom, pos, name, ref, alt, strand in variants: | |
| 153 center = pos + len(ref) // 2 | |
| 154 start = center - start_radius | |
| 155 end = center + end_radius | |
| 156 | |
| 157 if isinstance(pred_data_generator.reference_genome_, Genome): | |
| 158 if "chr" not in chrom: | |
| 159 chrom = "chr" + chrom | |
| 160 if "MT" in chrom: | |
| 161 chrom = chrom[:-1] | |
| 162 try: | |
| 163 rows = blacklist_tabix.query(chrom, start, end) | |
| 164 found = 0 | |
| 165 for row in rows: | |
| 166 found = 1 | |
| 167 break | |
| 168 if found: | |
| 169 continue | |
| 170 except tabix.TabixError: | |
| 171 pass | |
| 172 | |
| 173 clean_variants.append((chrom, pos, name, ref, alt, strand)) | |
| 174 else: | |
| 175 clean_variants = variants | |
| 176 | |
| 177 setattr(pred_data_generator, 'variants', clean_variants) | |
| 178 | |
| 179 variants = np.array(clean_variants) | |
| 180 # predict 1600 sample at once then write to file | 143 # predict 1600 sample at once then write to file |
| 181 gen_flow = pred_data_generator.flow(batch_size=1600) | 144 gen_flow = pred_data_generator.flow(batch_size=1600) |
| 182 | 145 |
| 183 file_writer = open(outfile_predict, 'w') | 146 file_writer = open(outfile_predict, 'w') |
| 184 header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', | 147 header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', |
