Mercurial > repos > bgruening > sklearn_clf_metrics
comparison model_prediction.py @ 28:c077c537cb67 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ba6a47bdf76bbf4cb276206ac1a8cbf61332fd16"
| author | bgruening |
|---|---|
| date | Fri, 13 Sep 2019 11:51:09 -0400 |
| parents | a0635108f6ec |
| children | e801d2034575 |
comparison
equal
deleted
inserted
replaced
| 27:a0635108f6ec | 28:c077c537cb67 |
|---|---|
| 1 import argparse | 1 import argparse |
| 2 import json | 2 import json |
| 3 import numpy as np | 3 import numpy as np |
| 4 import pandas as pd | 4 import pandas as pd |
| 5 import tabix | |
| 5 import warnings | 6 import warnings |
| 6 | 7 |
| 7 from scipy.io import mmread | 8 from scipy.io import mmread |
| 8 from sklearn.pipeline import Pipeline | 9 from sklearn.pipeline import Pipeline |
| 9 | 10 |
| 11 from galaxy_ml.externals.selene_sdk.sequences import Genome | |
| 10 from galaxy_ml.utils import (load_model, read_columns, | 12 from galaxy_ml.utils import (load_model, read_columns, |
| 11 get_module, try_get_attr) | 13 get_module, try_get_attr) |
| 12 | 14 |
| 13 | 15 |
| 14 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | 16 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) |
| 136 pred_data_generator = klass( | 138 pred_data_generator = klass( |
| 137 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) | 139 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) |
| 138 | 140 |
| 139 pred_data_generator.fit() | 141 pred_data_generator.fit() |
| 140 | 142 |
| 141 preds = estimator.model_.predict_generator( | 143 variants = pred_data_generator.variants |
| 142 pred_data_generator.flow(batch_size=32), | 144 # TODO : remove the following block after galaxy-ml v0.7.13 |
| 143 workers=N_JOBS, | 145 blacklist_tabix = getattr(pred_data_generator.reference_genome_, |
| 144 use_multiprocessing=True) | 146 '_blacklist_tabix', None) |
| 145 | 147 clean_variants = [] |
| 146 if preds.min() < 0. or preds.max() > 1.: | 148 if blacklist_tabix: |
| 147 warnings.warn('Network returning invalid probability values. ' | 149 start_radius = pred_data_generator.start_radius_ |
| 148 'The last layer might not normalize predictions ' | 150 end_radius = pred_data_generator.end_radius_ |
| 149 'into probabilities ' | 151 |
| 150 '(like softmax or sigmoid would).') | 152 for chrom, pos, name, ref, alt, strand in variants: |
| 151 | 153 center = pos + len(ref) // 2 |
| 152 if params['method'] == 'predict_proba' and preds.shape[1] == 1: | 154 start = center - start_radius |
| 153 # first column is probability of class 0 and second is of class 1 | 155 end = center + end_radius |
| 154 preds = np.hstack([1 - preds, preds]) | 156 |
| 155 | 157 if isinstance(pred_data_generator.reference_genome_, Genome): |
| 156 elif params['method'] == 'predict': | 158 if "chr" not in chrom: |
| 157 if preds.shape[-1] > 1: | 159 chrom = "chr" + chrom |
| 158 # if the last activation is `softmax`, the sum of all | 160 if "MT" in chrom: |
| 159 # probibilities will 1, the classification is considered as | 161 chrom = chrom[:-1] |
| 160 # multi-class problem, otherwise, we take it as multi-label. | 162 try: |
| 161 act = getattr(estimator.model_.layers[-1], 'activation', None) | 163 rows = blacklist_tabix.query(chrom, start, end) |
| 162 if act and act.__name__ == 'softmax': | 164 found = 0 |
| 163 classes = preds.argmax(axis=-1) | 165 for row in rows: |
| 166 found = 1 | |
| 167 break | |
| 168 if found: | |
| 169 continue | |
| 170 except tabix.TabixError: | |
| 171 pass | |
| 172 | |
| 173 clean_variants.append((chrom, pos, name, ref, alt, strand)) | |
| 174 else: | |
| 175 clean_variants = variants | |
| 176 | |
| 177 setattr(pred_data_generator, 'variants', clean_variants) | |
| 178 | |
| 179 variants = np.array(clean_variants) | |
| 180 # predict 1600 sample at once then write to file | |
| 181 gen_flow = pred_data_generator.flow(batch_size=1600) | |
| 182 | |
| 183 file_writer = open(outfile_predict, 'w') | |
| 184 header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', | |
| 185 'alt', 'strand']) | |
| 186 file_writer.write(header_row) | |
| 187 header_done = False | |
| 188 | |
| 189 steps_done = 0 | |
| 190 | |
| 191 # TODO: multiple threading | |
| 192 try: | |
| 193 while steps_done < len(gen_flow): | |
| 194 index_array = next(gen_flow.index_generator) | |
| 195 batch_X = gen_flow._get_batches_of_transformed_samples( | |
| 196 index_array) | |
| 197 | |
| 198 if params['method'] == 'predict': | |
| 199 batch_preds = estimator.predict( | |
| 200 batch_X, | |
| 201 # The presence of `pred_data_generator` below is to | |
| 202 # override model carrying data_generator if there | |
| 203 # is any. | |
| 204 data_generator=pred_data_generator) | |
| 164 else: | 205 else: |
| 165 preds = (preds > 0.5).astype('int32') | 206 batch_preds = estimator.predict_proba( |
| 166 else: | 207 batch_X, |
| 167 classes = (preds > 0.5).astype('int32') | 208 # The presence of `pred_data_generator` below is to |
| 168 | 209 # override model carrying data_generator if there |
| 169 preds = estimator.classes_[classes] | 210 # is any. |
| 211 data_generator=pred_data_generator) | |
| 212 | |
| 213 if batch_preds.ndim == 1: | |
| 214 batch_preds = batch_preds[:, np.newaxis] | |
| 215 | |
| 216 batch_meta = variants[index_array] | |
| 217 batch_out = np.column_stack([batch_meta, batch_preds]) | |
| 218 | |
| 219 if not header_done: | |
| 220 heads = np.arange(batch_preds.shape[-1]).astype(str) | |
| 221 heads_str = '\t'.join(heads) | |
| 222 file_writer.write("\t%s\n" % heads_str) | |
| 223 header_done = True | |
| 224 | |
| 225 for row in batch_out: | |
| 226 row_str = '\t'.join(row) | |
| 227 file_writer.write("%s\n" % row_str) | |
| 228 | |
| 229 steps_done += 1 | |
| 230 | |
| 231 finally: | |
| 232 file_writer.close() | |
| 233 # TODO: make api `pred_data_generator.close()` | |
| 234 pred_data_generator.close() | |
| 235 return 0 | |
| 170 # end input | 236 # end input |
| 171 | 237 |
| 172 # output | 238 # output |
| 173 if input_type == 'variant_effect': # TODO: save in batchs | 239 if len(preds.shape) == 1: |
| 174 rval = pd.DataFrame(preds) | |
| 175 meta = pd.DataFrame( | |
| 176 pred_data_generator.variants, | |
| 177 columns=['chrom', 'pos', 'name', 'ref', 'alt', 'strand']) | |
| 178 | |
| 179 rval = pd.concat([meta, rval], axis=1) | |
| 180 | |
| 181 elif len(preds.shape) == 1: | |
| 182 rval = pd.DataFrame(preds, columns=['Predicted']) | 240 rval = pd.DataFrame(preds, columns=['Predicted']) |
| 183 else: | 241 else: |
| 184 rval = pd.DataFrame(preds) | 242 rval = pd.DataFrame(preds) |
| 185 | 243 |
| 186 rval.to_csv(outfile_predict, sep='\t', | 244 rval.to_csv(outfile_predict, sep='\t', header=True, index=False) |
| 187 header=True, index=False) | |
| 188 | 245 |
| 189 | 246 |
| 190 if __name__ == '__main__': | 247 if __name__ == '__main__': |
| 191 aparser = argparse.ArgumentParser() | 248 aparser = argparse.ArgumentParser() |
| 192 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 249 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
