Mercurial > repos > bgruening > sklearn_clf_metrics
comparison search_model_validation.py @ 24:77dc53da2d1b draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 57f4407e278a615f47a377a3328782b1d8e0b54d
| author | bgruening |
|---|---|
| date | Sun, 30 Dec 2018 01:43:13 -0500 |
| parents | |
| children | 4e0b0a6a89a6 |
comparison
equal
deleted
inserted
replaced
| 23:cc2fbe5cbb73 | 24:77dc53da2d1b |
|---|---|
| 1 import imblearn | |
| 2 import json | |
| 3 import numpy as np | |
| 4 import os | |
| 5 import pandas | |
| 6 import pickle | |
| 7 import skrebate | |
| 8 import sklearn | |
| 9 import sys | |
| 10 import xgboost | |
| 11 import warnings | |
| 12 from imblearn import under_sampling, over_sampling, combine | |
| 13 from imblearn.pipeline import Pipeline as imbPipeline | |
| 14 from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, | |
| 15 feature_selection, gaussian_process, kernel_approximation, metrics, | |
| 16 model_selection, naive_bayes, neighbors, pipeline, preprocessing, | |
| 17 svm, linear_model, tree, discriminant_analysis) | |
| 18 from sklearn.exceptions import FitFailedWarning | |
| 19 from sklearn.externals import joblib | |
| 20 from utils import get_cv, get_scoring, get_X_y, load_model, read_columns, SafeEval | |
| 21 | |
| 22 | |
| 23 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
| 24 | |
| 25 | |
| 26 def get_search_params(params_builder): | |
| 27 search_params = {} | |
| 28 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 29 safe_eval_es = SafeEval(load_estimators=True) | |
| 30 | |
| 31 for p in params_builder['param_set']: | |
| 32 search_p = p['search_param_selector']['search_p'] | |
| 33 if search_p.strip() == '': | |
| 34 continue | |
| 35 param_type = p['search_param_selector']['selected_param_type'] | |
| 36 | |
| 37 lst = search_p.split(':') | |
| 38 assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." | |
| 39 literal = lst[1].strip() | |
| 40 param_name = lst[0].strip() | |
| 41 if param_name: | |
| 42 if param_name.lower() == 'n_jobs': | |
| 43 sys.exit("Parameter `%s` is invalid for search." %param_name) | |
| 44 elif not param_name.endswith('-'): | |
| 45 ev = safe_eval(literal) | |
| 46 if param_type == 'final_estimator_p': | |
| 47 search_params['estimator__' + param_name] = ev | |
| 48 else: | |
| 49 search_params['preprocessing_' + param_type[5:6] + '__' + param_name] = ev | |
| 50 else: | |
| 51 # only for estimator eval, add `-` to the end of param | |
| 52 #TODO maybe add regular express check | |
| 53 ev = safe_eval_es(literal) | |
| 54 for obj in ev: | |
| 55 if 'n_jobs' in obj.get_params(): | |
| 56 obj.set_params( n_jobs=N_JOBS ) | |
| 57 if param_type == 'final_estimator_p': | |
| 58 search_params['estimator__' + param_name[:-1]] = ev | |
| 59 else: | |
| 60 search_params['preprocessing_' + param_type[5:6] + '__' + param_name[:-1]] = ev | |
| 61 elif param_type != 'final_estimator_p': | |
| 62 #TODO regular express check ? | |
| 63 ev = safe_eval_es(literal) | |
| 64 preprocessors = [preprocessing.StandardScaler(), preprocessing.Binarizer(), preprocessing.Imputer(), | |
| 65 preprocessing.MaxAbsScaler(), preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | |
| 66 preprocessing.PolynomialFeatures(),preprocessing.RobustScaler(), | |
| 67 feature_selection.SelectKBest(), feature_selection.GenericUnivariateSelect(), | |
| 68 feature_selection.SelectPercentile(), feature_selection.SelectFpr(), feature_selection.SelectFdr(), | |
| 69 feature_selection.SelectFwe(), feature_selection.VarianceThreshold(), | |
| 70 decomposition.FactorAnalysis(random_state=0), decomposition.FastICA(random_state=0), decomposition.IncrementalPCA(), | |
| 71 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), | |
| 72 decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), | |
| 73 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.NMF(random_state=0), | |
| 74 decomposition.PCA(random_state=0), decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 75 decomposition.TruncatedSVD(random_state=0), | |
| 76 kernel_approximation.Nystroem(random_state=0), kernel_approximation.RBFSampler(random_state=0), | |
| 77 kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.SkewedChi2Sampler(random_state=0), | |
| 78 cluster.FeatureAgglomeration(), | |
| 79 skrebate.ReliefF(n_jobs=N_JOBS), skrebate.SURF(n_jobs=N_JOBS), skrebate.SURFstar(n_jobs=N_JOBS), | |
| 80 skrebate.MultiSURF(n_jobs=N_JOBS), skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
| 81 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), | |
| 82 imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), | |
| 83 imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | |
| 84 imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | |
| 85 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
| 86 imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), | |
| 87 imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), | |
| 88 imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), | |
| 89 imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), | |
| 90 imblearn.under_sampling.RandomUnderSampler(random_state=0), | |
| 91 imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), | |
| 92 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
| 93 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
| 94 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
| 95 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 96 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 97 imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
| 98 imblearn.combine.SMOTEENN(random_state=0), imblearn.combine.SMOTETomek(random_state=0)] | |
| 99 newlist = [] | |
| 100 for obj in ev: | |
| 101 if obj is None: | |
| 102 newlist.append(None) | |
| 103 elif obj == 'all_0': | |
| 104 newlist.extend(preprocessors[0:36]) | |
| 105 elif obj == 'sk_prep_all': # no KernalCenter() | |
| 106 newlist.extend(preprocessors[0:8]) | |
| 107 elif obj == 'fs_all': | |
| 108 newlist.extend(preprocessors[8:15]) | |
| 109 elif obj == 'decomp_all': | |
| 110 newlist.extend(preprocessors[15:26]) | |
| 111 elif obj == 'k_appr_all': | |
| 112 newlist.extend(preprocessors[26:30]) | |
| 113 elif obj == 'reb_all': | |
| 114 newlist.extend(preprocessors[31:36]) | |
| 115 elif obj == 'imb_all': | |
| 116 newlist.extend(preprocessors[36:55]) | |
| 117 elif type(obj) is int and -1 < obj < len(preprocessors): | |
| 118 newlist.append(preprocessors[obj]) | |
| 119 elif hasattr(obj, 'get_params'): # user object | |
| 120 if 'n_jobs' in obj.get_params(): | |
| 121 newlist.append( obj.set_params(n_jobs=N_JOBS) ) | |
| 122 else: | |
| 123 newlist.append(obj) | |
| 124 else: | |
| 125 sys.exit("Unsupported preprocessor type: %r" %(obj)) | |
| 126 search_params['preprocessing_' + param_type[5:6]] = newlist | |
| 127 else: | |
| 128 sys.exit("Parameter name of the final estimator can't be skipped!") | |
| 129 | |
| 130 return search_params | |
| 131 | |
| 132 | |
| 133 if __name__ == '__main__': | |
| 134 | |
| 135 warnings.simplefilter('ignore') | |
| 136 | |
| 137 input_json_path = sys.argv[1] | |
| 138 with open(input_json_path, 'r') as param_handler: | |
| 139 params = json.load(param_handler) | |
| 140 | |
| 141 infile_pipeline = sys.argv[2] | |
| 142 infile1 = sys.argv[3] | |
| 143 infile2 = sys.argv[4] | |
| 144 outfile_result = sys.argv[5] | |
| 145 if len(sys.argv) > 6: | |
| 146 outfile_estimator = sys.argv[6] | |
| 147 else: | |
| 148 outfile_estimator = None | |
| 149 | |
| 150 params_builder = params['search_schemes']['search_params_builder'] | |
| 151 | |
| 152 input_type = params['input_options']['selected_input'] | |
| 153 if input_type == 'tabular': | |
| 154 header = 'infer' if params['input_options']['header1'] else None | |
| 155 column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] | |
| 156 if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: | |
| 157 c = params['input_options']['column_selector_options_1']['col1'] | |
| 158 else: | |
| 159 c = None | |
| 160 X = read_columns( | |
| 161 infile1, | |
| 162 c = c, | |
| 163 c_option = column_option, | |
| 164 sep='\t', | |
| 165 header=header, | |
| 166 parse_dates=True | |
| 167 ) | |
| 168 else: | |
| 169 X = mmread(open(infile1, 'r')) | |
| 170 | |
| 171 header = 'infer' if params['input_options']['header2'] else None | |
| 172 column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] | |
| 173 if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: | |
| 174 c = params['input_options']['column_selector_options_2']['col2'] | |
| 175 else: | |
| 176 c = None | |
| 177 y = read_columns( | |
| 178 infile2, | |
| 179 c = c, | |
| 180 c_option = column_option, | |
| 181 sep='\t', | |
| 182 header=header, | |
| 183 parse_dates=True | |
| 184 ) | |
| 185 y = y.ravel() | |
| 186 | |
| 187 optimizer = params['search_schemes']['selected_search_scheme'] | |
| 188 optimizer = getattr(model_selection, optimizer) | |
| 189 | |
| 190 options = params['search_schemes']['options'] | |
| 191 splitter, groups = get_cv(options.pop('cv_selector')) | |
| 192 if groups is None: | |
| 193 options['cv'] = splitter | |
| 194 elif groups == '': | |
| 195 options['cv'] = list( splitter.split(X, y, groups=None) ) | |
| 196 else: | |
| 197 options['cv'] = list( splitter.split(X, y, groups=groups) ) | |
| 198 options['n_jobs'] = N_JOBS | |
| 199 primary_scoring = options['scoring']['primary_scoring'] | |
| 200 options['scoring'] = get_scoring(options['scoring']) | |
| 201 if options['error_score']: | |
| 202 options['error_score'] = 'raise' | |
| 203 else: | |
| 204 options['error_score'] = np.NaN | |
| 205 if options['refit'] and isinstance(options['scoring'], dict): | |
| 206 options['refit'] = 'primary' | |
| 207 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | |
| 208 options['pre_dispatch'] = None | |
| 209 | |
| 210 with open(infile_pipeline, 'rb') as pipeline_handler: | |
| 211 pipeline = load_model(pipeline_handler) | |
| 212 | |
| 213 search_params = get_search_params(params_builder) | |
| 214 searcher = optimizer(pipeline, search_params, **options) | |
| 215 | |
| 216 if options['error_score'] == 'raise': | |
| 217 searcher.fit(X, y) | |
| 218 else: | |
| 219 warnings.simplefilter('always', FitFailedWarning) | |
| 220 with warnings.catch_warnings(record=True) as w: | |
| 221 try: | |
| 222 searcher.fit(X, y) | |
| 223 except ValueError: | |
| 224 pass | |
| 225 for warning in w: | |
| 226 print(repr(warning.message)) | |
| 227 | |
| 228 cv_result = pandas.DataFrame(searcher.cv_results_) | |
| 229 cv_result.rename(inplace=True, columns={'mean_test_primary': 'mean_test_'+primary_scoring, 'rank_test_primary': 'rank_test_'+primary_scoring}) | |
| 230 cv_result.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) | |
| 231 | |
| 232 if outfile_estimator: | |
| 233 with open(outfile_estimator, 'wb') as output_handler: | |
| 234 pickle.dump(searcher.best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) |
