Mercurial > repos > bgruening > perf
view perf.xml @ 1:7aa26fb0ac9e draft default tip
Uploaded
| author | bgruening |
|---|---|
| date | Thu, 15 May 2014 16:58:26 -0400 |
| parents | e390b5b6b89c |
| children |
line wrap: on
line source
<tool id="stats_perf_tool" name="Performance metrics" version="5.11.0"> <description>suitable for boolean classification problems (perf)</description> <requirements> <requirement type="package" version="5.11">perf</requirement> </requirements> <command> perf -t $threshold #echo ' '.join(str($performance_measures).split(','))# $plot -file "${infile}" 2>/dev/null > perf.out; #if str($plot): csplit --prefix 'perf' -s perf.out '/^$/'; cat perf00 | tr ' ' \\t > perf_plotting_data.out; cat perf01 | awk '{printf("%s\t%s\n",$1,$2)}' > perf_results.out; #else: cat perf.out | awk '{printf("%s\t%s\n",$1,$2)}' > perf_results.out; #end if </command> <inputs> <param name="infile" format="tabular" type="data" label="File to select" help="1st col targets, 2nd col predictions (-infile)"/> <param name="performance_measures" multiple="True" type="select" display="checkboxes" label="Select a pre-defined filtering set"> <option value="-ACC" selected="True">Accuracy</option> <option value="-RMS">Root Mean Squared Error</option> <option value="-CXE">Mean Cross-Entropy</option> <option value="-ROC" selected="True">ROC area</option> <option value="-R50">ROC area up to 50 negative examples</option> <option value="-SEN">Sensitivity</option> <option value="-SPC">Specificity</option> <option value="-NPV">Negative Predictive Value</option> <option value="-PPV">Positive Predictive Value</option> <option value="-PRE">Precision</option> <option value="-REC">Recall</option> <option value="-PRF">F1 score</option> <option value="-PRB">Precision/Recall Break Even Point</option> <option value="-APR" selected="True">Mean Average Precision</option> <!--option value="-LFT">Lift (at threshold)</option> <option value="-TOP1">Top 1: is the top ranked case positive</option> <option value="-TOP10">Top 10: is there a positive in the top 10 ranked cases</option> <option value="-NTOP"> How many positives in the top N ranked cases</option> <option value="-RKL">Rank of *last* (poorest ranked) positive case</option> <option value="-NRM">Norm error using metric</option> <option value="-CST">Total cost using these cost values, plus min-cost results</option--> <!--option value="-SAR">typically wACC = wROC = wRMS = 1.0</option--> <!--option value="-CAL">CA1/CA2 scores</option--> <!--option value="-SLQ">Slac Q-score</option--> </param> <param name="plot" type="select" label="Plotting type"> <option value="" selected="True">No plot</option> <option value="-plot roc">ROC plot</option> <option value="-plor pr">Precision/Recall plot</option> <option value="-plot lift">Lift versus threshold plot</option> <option value="-plor cost">Cost versus threshold plot</option> <option value="-plor acc">Accuracy versus threshold plot</option> </param> <param name="threshold" size="4" type="float" min="0" value="0.5" label="Threshold"/> </inputs> <outputs> <data format="tabular" name="outfile" from_work_dir="perf_results.out" label="Performance measures from ${on_string}" /> <data format="tabular" name="outfile_plotting" from_work_dir="perf_plotting_data.out" label="Performance values from ${on_string}"> <filter>plot is not ''</filter> </data> </outputs> <tests> <test> <param name="infile" ftype="tabular" value="testperf.dat"/> <param name="performance_measures" value="-ACC,-ROC,-APR" /> <output name="outfile" ftype="tabular" file="testperf.results" /> <output name="outfile_plotting" ftype="tabular" file="testperf.results.plot" /> </test> </tests> <help> **What it does** Perf calculates a variety of performance metrics suitable for boolean classification problems. Metrics include: accuracy, root-mean-squared-error, cross-entropy, precision, recall, precision/recall break-even point and F-score, area under the ROC curve, lift, weighted cost, top 1, top 10, rank of lowest positive case, q-score, several measures of probability calibration, etc. For more information please refer to: http://osmot.cs.cornell.edu/kddcup/software.html </help> </tool>
