Mercurial > repos > bgruening > model_prediction
comparison ml_visualization_ex.py @ 8:cc3aac551859 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
| author | bgruening |
|---|---|
| date | Tue, 13 Apr 2021 20:34:37 +0000 |
| parents | 1abb251ce498 |
| children | 5f848056fbf8 |
comparison
equal
deleted
inserted
replaced
| 7:1abb251ce498 | 8:cc3aac551859 |
|---|---|
| 1 import argparse | 1 import argparse |
| 2 import json | 2 import json |
| 3 import os | |
| 4 import warnings | |
| 5 | |
| 3 import matplotlib | 6 import matplotlib |
| 4 import matplotlib.pyplot as plt | 7 import matplotlib.pyplot as plt |
| 5 import numpy as np | 8 import numpy as np |
| 6 import os | |
| 7 import pandas as pd | 9 import pandas as pd |
| 8 import plotly | 10 import plotly |
| 9 import plotly.graph_objs as go | 11 import plotly.graph_objs as go |
| 10 import warnings | 12 from galaxy_ml.utils import load_model, read_columns, SafeEval |
| 11 | |
| 12 from keras.models import model_from_json | 13 from keras.models import model_from_json |
| 13 from keras.utils import plot_model | 14 from keras.utils import plot_model |
| 14 from sklearn.feature_selection.base import SelectorMixin | 15 from sklearn.feature_selection.base import SelectorMixin |
| 15 from sklearn.metrics import precision_recall_curve, average_precision_score | 16 from sklearn.metrics import auc, average_precision_score, confusion_matrix, precision_recall_curve, roc_curve |
| 16 from sklearn.metrics import roc_curve, auc, confusion_matrix | |
| 17 from sklearn.pipeline import Pipeline | 17 from sklearn.pipeline import Pipeline |
| 18 from galaxy_ml.utils import load_model, read_columns, SafeEval | |
| 19 | 18 |
| 20 | 19 |
| 21 safe_eval = SafeEval() | 20 safe_eval = SafeEval() |
| 22 | 21 |
| 23 # plotly default colors | 22 # plotly default colors |
| 24 default_colors = [ | 23 default_colors = [ |
| 25 '#1f77b4', # muted blue | 24 "#1f77b4", # muted blue |
| 26 '#ff7f0e', # safety orange | 25 "#ff7f0e", # safety orange |
| 27 '#2ca02c', # cooked asparagus green | 26 "#2ca02c", # cooked asparagus green |
| 28 '#d62728', # brick red | 27 "#d62728", # brick red |
| 29 '#9467bd', # muted purple | 28 "#9467bd", # muted purple |
| 30 '#8c564b', # chestnut brown | 29 "#8c564b", # chestnut brown |
| 31 '#e377c2', # raspberry yogurt pink | 30 "#e377c2", # raspberry yogurt pink |
| 32 '#7f7f7f', # middle gray | 31 "#7f7f7f", # middle gray |
| 33 '#bcbd22', # curry yellow-green | 32 "#bcbd22", # curry yellow-green |
| 34 '#17becf' # blue-teal | 33 "#17becf", # blue-teal |
| 35 ] | 34 ] |
| 36 | 35 |
| 37 | 36 |
| 38 def visualize_pr_curve_plotly(df1, df2, pos_label, title=None): | 37 def visualize_pr_curve_plotly(df1, df2, pos_label, title=None): |
| 39 """output pr-curve in html using plotly | 38 """output pr-curve in html using plotly |
| 50 data = [] | 49 data = [] |
| 51 for idx in range(df1.shape[1]): | 50 for idx in range(df1.shape[1]): |
| 52 y_true = df1.iloc[:, idx].values | 51 y_true = df1.iloc[:, idx].values |
| 53 y_score = df2.iloc[:, idx].values | 52 y_score = df2.iloc[:, idx].values |
| 54 | 53 |
| 55 precision, recall, _ = precision_recall_curve( | 54 precision, recall, _ = precision_recall_curve(y_true, y_score, pos_label=pos_label) |
| 56 y_true, y_score, pos_label=pos_label) | 55 ap = average_precision_score(y_true, y_score, pos_label=pos_label or 1) |
| 57 ap = average_precision_score( | |
| 58 y_true, y_score, pos_label=pos_label or 1) | |
| 59 | 56 |
| 60 trace = go.Scatter( | 57 trace = go.Scatter( |
| 61 x=recall, | 58 x=recall, |
| 62 y=precision, | 59 y=precision, |
| 63 mode='lines', | 60 mode="lines", |
| 64 marker=dict( | 61 marker=dict(color=default_colors[idx % len(default_colors)]), |
| 65 color=default_colors[idx % len(default_colors)] | 62 name="%s (area = %.3f)" % (idx, ap), |
| 66 ), | |
| 67 name='%s (area = %.3f)' % (idx, ap) | |
| 68 ) | 63 ) |
| 69 data.append(trace) | 64 data.append(trace) |
| 70 | 65 |
| 71 layout = go.Layout( | 66 layout = go.Layout( |
| 72 xaxis=dict( | 67 xaxis=dict(title="Recall", linecolor="lightslategray", linewidth=1), |
| 73 title='Recall', | 68 yaxis=dict(title="Precision", linecolor="lightslategray", linewidth=1), |
| 74 linecolor='lightslategray', | |
| 75 linewidth=1 | |
| 76 ), | |
| 77 yaxis=dict( | |
| 78 title='Precision', | |
| 79 linecolor='lightslategray', | |
| 80 linewidth=1 | |
| 81 ), | |
| 82 title=dict( | 69 title=dict( |
| 83 text=title or 'Precision-Recall Curve', | 70 text=title or "Precision-Recall Curve", |
| 84 x=0.5, | 71 x=0.5, |
| 85 y=0.92, | 72 y=0.92, |
| 86 xanchor='center', | 73 xanchor="center", |
| 87 yanchor='top' | 74 yanchor="top", |
| 88 ), | 75 ), |
| 89 font=dict( | 76 font=dict(family="sans-serif", size=11), |
| 90 family="sans-serif", | |
| 91 size=11 | |
| 92 ), | |
| 93 # control backgroud colors | 77 # control backgroud colors |
| 94 plot_bgcolor='rgba(255,255,255,0)' | 78 plot_bgcolor="rgba(255,255,255,0)", |
| 95 ) | 79 ) |
| 96 """ | 80 """ |
| 97 legend=dict( | 81 legend=dict( |
| 98 x=0.95, | 82 x=0.95, |
| 99 y=0, | 83 y=0, |
| 110 | 94 |
| 111 fig = go.Figure(data=data, layout=layout) | 95 fig = go.Figure(data=data, layout=layout) |
| 112 | 96 |
| 113 plotly.offline.plot(fig, filename="output.html", auto_open=False) | 97 plotly.offline.plot(fig, filename="output.html", auto_open=False) |
| 114 # to be discovered by `from_work_dir` | 98 # to be discovered by `from_work_dir` |
| 115 os.rename('output.html', 'output') | 99 os.rename("output.html", "output") |
| 116 | 100 |
| 117 | 101 |
| 118 def visualize_pr_curve_matplotlib(df1, df2, pos_label, title=None): | 102 def visualize_pr_curve_matplotlib(df1, df2, pos_label, title=None): |
| 119 """visualize pr-curve using matplotlib and output svg image | 103 """visualize pr-curve using matplotlib and output svg image""" |
| 120 """ | |
| 121 backend = matplotlib.get_backend() | 104 backend = matplotlib.get_backend() |
| 122 if "inline" not in backend: | 105 if "inline" not in backend: |
| 123 matplotlib.use("SVG") | 106 matplotlib.use("SVG") |
| 124 plt.style.use('seaborn-colorblind') | 107 plt.style.use("seaborn-colorblind") |
| 125 plt.figure() | 108 plt.figure() |
| 126 | 109 |
| 127 for idx in range(df1.shape[1]): | 110 for idx in range(df1.shape[1]): |
| 128 y_true = df1.iloc[:, idx].values | 111 y_true = df1.iloc[:, idx].values |
| 129 y_score = df2.iloc[:, idx].values | 112 y_score = df2.iloc[:, idx].values |
| 130 | 113 |
| 131 precision, recall, _ = precision_recall_curve( | 114 precision, recall, _ = precision_recall_curve(y_true, y_score, pos_label=pos_label) |
| 132 y_true, y_score, pos_label=pos_label) | 115 ap = average_precision_score(y_true, y_score, pos_label=pos_label or 1) |
| 133 ap = average_precision_score( | 116 |
| 134 y_true, y_score, pos_label=pos_label or 1) | 117 plt.step( |
| 135 | 118 recall, |
| 136 plt.step(recall, precision, 'r-', color="black", alpha=0.3, | 119 precision, |
| 137 lw=1, where="post", label='%s (area = %.3f)' % (idx, ap)) | 120 "r-", |
| 121 color="black", | |
| 122 alpha=0.3, | |
| 123 lw=1, | |
| 124 where="post", | |
| 125 label="%s (area = %.3f)" % (idx, ap), | |
| 126 ) | |
| 138 | 127 |
| 139 plt.xlim([0.0, 1.0]) | 128 plt.xlim([0.0, 1.0]) |
| 140 plt.ylim([0.0, 1.05]) | 129 plt.ylim([0.0, 1.05]) |
| 141 plt.xlabel('Recall') | 130 plt.xlabel("Recall") |
| 142 plt.ylabel('Precision') | 131 plt.ylabel("Precision") |
| 143 title = title or 'Precision-Recall Curve' | 132 title = title or "Precision-Recall Curve" |
| 144 plt.title(title) | 133 plt.title(title) |
| 145 folder = os.getcwd() | 134 folder = os.getcwd() |
| 146 plt.savefig(os.path.join(folder, "output.svg"), format="svg") | 135 plt.savefig(os.path.join(folder, "output.svg"), format="svg") |
| 147 os.rename(os.path.join(folder, "output.svg"), | 136 os.rename(os.path.join(folder, "output.svg"), os.path.join(folder, "output")) |
| 148 os.path.join(folder, "output")) | 137 |
| 149 | 138 |
| 150 | 139 def visualize_roc_curve_plotly(df1, df2, pos_label, drop_intermediate=True, title=None): |
| 151 def visualize_roc_curve_plotly(df1, df2, pos_label, | |
| 152 drop_intermediate=True, | |
| 153 title=None): | |
| 154 """output roc-curve in html using plotly | 140 """output roc-curve in html using plotly |
| 155 | 141 |
| 156 df1 : pandas.DataFrame | 142 df1 : pandas.DataFrame |
| 157 Containing y_true | 143 Containing y_true |
| 158 df2 : pandas.DataFrame | 144 df2 : pandas.DataFrame |
| 167 data = [] | 153 data = [] |
| 168 for idx in range(df1.shape[1]): | 154 for idx in range(df1.shape[1]): |
| 169 y_true = df1.iloc[:, idx].values | 155 y_true = df1.iloc[:, idx].values |
| 170 y_score = df2.iloc[:, idx].values | 156 y_score = df2.iloc[:, idx].values |
| 171 | 157 |
| 172 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, | 158 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, drop_intermediate=drop_intermediate) |
| 173 drop_intermediate=drop_intermediate) | |
| 174 roc_auc = auc(fpr, tpr) | 159 roc_auc = auc(fpr, tpr) |
| 175 | 160 |
| 176 trace = go.Scatter( | 161 trace = go.Scatter( |
| 177 x=fpr, | 162 x=fpr, |
| 178 y=tpr, | 163 y=tpr, |
| 179 mode='lines', | 164 mode="lines", |
| 180 marker=dict( | 165 marker=dict(color=default_colors[idx % len(default_colors)]), |
| 181 color=default_colors[idx % len(default_colors)] | 166 name="%s (area = %.3f)" % (idx, roc_auc), |
| 182 ), | |
| 183 name='%s (area = %.3f)' % (idx, roc_auc) | |
| 184 ) | 167 ) |
| 185 data.append(trace) | 168 data.append(trace) |
| 186 | 169 |
| 187 layout = go.Layout( | 170 layout = go.Layout( |
| 188 xaxis=dict( | 171 xaxis=dict(title="False Positive Rate", linecolor="lightslategray", linewidth=1), |
| 189 title='False Positive Rate', | 172 yaxis=dict(title="True Positive Rate", linecolor="lightslategray", linewidth=1), |
| 190 linecolor='lightslategray', | |
| 191 linewidth=1 | |
| 192 ), | |
| 193 yaxis=dict( | |
| 194 title='True Positive Rate', | |
| 195 linecolor='lightslategray', | |
| 196 linewidth=1 | |
| 197 ), | |
| 198 title=dict( | 173 title=dict( |
| 199 text=title or 'Receiver Operating Characteristic (ROC) Curve', | 174 text=title or "Receiver Operating Characteristic (ROC) Curve", |
| 200 x=0.5, | 175 x=0.5, |
| 201 y=0.92, | 176 y=0.92, |
| 202 xanchor='center', | 177 xanchor="center", |
| 203 yanchor='top' | 178 yanchor="top", |
| 204 ), | 179 ), |
| 205 font=dict( | 180 font=dict(family="sans-serif", size=11), |
| 206 family="sans-serif", | |
| 207 size=11 | |
| 208 ), | |
| 209 # control backgroud colors | 181 # control backgroud colors |
| 210 plot_bgcolor='rgba(255,255,255,0)' | 182 plot_bgcolor="rgba(255,255,255,0)", |
| 211 ) | 183 ) |
| 212 """ | 184 """ |
| 213 # legend=dict( | 185 # legend=dict( |
| 214 # x=0.95, | 186 # x=0.95, |
| 215 # y=0, | 187 # y=0, |
| 227 | 199 |
| 228 fig = go.Figure(data=data, layout=layout) | 200 fig = go.Figure(data=data, layout=layout) |
| 229 | 201 |
| 230 plotly.offline.plot(fig, filename="output.html", auto_open=False) | 202 plotly.offline.plot(fig, filename="output.html", auto_open=False) |
| 231 # to be discovered by `from_work_dir` | 203 # to be discovered by `from_work_dir` |
| 232 os.rename('output.html', 'output') | 204 os.rename("output.html", "output") |
| 233 | 205 |
| 234 | 206 |
| 235 def visualize_roc_curve_matplotlib(df1, df2, pos_label, | 207 def visualize_roc_curve_matplotlib(df1, df2, pos_label, drop_intermediate=True, title=None): |
| 236 drop_intermediate=True, | 208 """visualize roc-curve using matplotlib and output svg image""" |
| 237 title=None): | |
| 238 """visualize roc-curve using matplotlib and output svg image | |
| 239 """ | |
| 240 backend = matplotlib.get_backend() | 209 backend = matplotlib.get_backend() |
| 241 if "inline" not in backend: | 210 if "inline" not in backend: |
| 242 matplotlib.use("SVG") | 211 matplotlib.use("SVG") |
| 243 plt.style.use('seaborn-colorblind') | 212 plt.style.use("seaborn-colorblind") |
| 244 plt.figure() | 213 plt.figure() |
| 245 | 214 |
| 246 for idx in range(df1.shape[1]): | 215 for idx in range(df1.shape[1]): |
| 247 y_true = df1.iloc[:, idx].values | 216 y_true = df1.iloc[:, idx].values |
| 248 y_score = df2.iloc[:, idx].values | 217 y_score = df2.iloc[:, idx].values |
| 249 | 218 |
| 250 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, | 219 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, drop_intermediate=drop_intermediate) |
| 251 drop_intermediate=drop_intermediate) | |
| 252 roc_auc = auc(fpr, tpr) | 220 roc_auc = auc(fpr, tpr) |
| 253 | 221 |
| 254 plt.step(fpr, tpr, 'r-', color="black", alpha=0.3, lw=1, | 222 plt.step( |
| 255 where="post", label='%s (area = %.3f)' % (idx, roc_auc)) | 223 fpr, |
| 224 tpr, | |
| 225 "r-", | |
| 226 color="black", | |
| 227 alpha=0.3, | |
| 228 lw=1, | |
| 229 where="post", | |
| 230 label="%s (area = %.3f)" % (idx, roc_auc), | |
| 231 ) | |
| 256 | 232 |
| 257 plt.xlim([0.0, 1.0]) | 233 plt.xlim([0.0, 1.0]) |
| 258 plt.ylim([0.0, 1.05]) | 234 plt.ylim([0.0, 1.05]) |
| 259 plt.xlabel('False Positive Rate') | 235 plt.xlabel("False Positive Rate") |
| 260 plt.ylabel('True Positive Rate') | 236 plt.ylabel("True Positive Rate") |
| 261 title = title or 'Receiver Operating Characteristic (ROC) Curve' | 237 title = title or "Receiver Operating Characteristic (ROC) Curve" |
| 262 plt.title(title) | 238 plt.title(title) |
| 263 folder = os.getcwd() | 239 folder = os.getcwd() |
| 264 plt.savefig(os.path.join(folder, "output.svg"), format="svg") | 240 plt.savefig(os.path.join(folder, "output.svg"), format="svg") |
| 265 os.rename(os.path.join(folder, "output.svg"), | 241 os.rename(os.path.join(folder, "output.svg"), os.path.join(folder, "output")) |
| 266 os.path.join(folder, "output")) | |
| 267 | 242 |
| 268 | 243 |
| 269 def get_dataframe(file_path, plot_selection, header_name, column_name): | 244 def get_dataframe(file_path, plot_selection, header_name, column_name): |
| 270 header = 'infer' if plot_selection[header_name] else None | 245 header = "infer" if plot_selection[header_name] else None |
| 271 column_option = plot_selection[column_name]["selected_column_selector_option"] | 246 column_option = plot_selection[column_name]["selected_column_selector_option"] |
| 272 if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: | 247 if column_option in [ |
| 248 "by_index_number", | |
| 249 "all_but_by_index_number", | |
| 250 "by_header_name", | |
| 251 "all_but_by_header_name", | |
| 252 ]: | |
| 273 col = plot_selection[column_name]["col1"] | 253 col = plot_selection[column_name]["col1"] |
| 274 else: | 254 else: |
| 275 col = None | 255 col = None |
| 276 _, input_df = read_columns(file_path, c=col, | 256 _, input_df = read_columns(file_path, c=col, |
| 277 c_option=column_option, | 257 c_option=column_option, |
| 278 return_df=True, | 258 return_df=True, |
| 279 sep='\t', header=header, | 259 sep='\t', header=header, |
| 280 parse_dates=True) | 260 parse_dates=True) |
| 281 return input_df | 261 return input_df |
| 282 | 262 |
| 283 | 263 |
| 284 def main(inputs, infile_estimator=None, infile1=None, | 264 def main( |
| 285 infile2=None, outfile_result=None, | 265 inputs, |
| 286 outfile_object=None, groups=None, | 266 infile_estimator=None, |
| 287 ref_seq=None, intervals=None, | 267 infile1=None, |
| 288 targets=None, fasta_path=None, | 268 infile2=None, |
| 289 model_config=None, true_labels=None, | 269 outfile_result=None, |
| 290 predicted_labels=None, plot_color=None, | 270 outfile_object=None, |
| 291 title=None): | 271 groups=None, |
| 272 ref_seq=None, | |
| 273 intervals=None, | |
| 274 targets=None, | |
| 275 fasta_path=None, | |
| 276 model_config=None, | |
| 277 true_labels=None, | |
| 278 predicted_labels=None, | |
| 279 plot_color=None, | |
| 280 title=None, | |
| 281 ): | |
| 292 """ | 282 """ |
| 293 Parameter | 283 Parameter |
| 294 --------- | 284 --------- |
| 295 inputs : str | 285 inputs : str |
| 296 File path to galaxy tool parameter | 286 File path to galaxy tool parameter |
| 339 Color of the confusion matrix heatmap | 329 Color of the confusion matrix heatmap |
| 340 | 330 |
| 341 title : str, default is None | 331 title : str, default is None |
| 342 Title of the confusion matrix heatmap | 332 Title of the confusion matrix heatmap |
| 343 """ | 333 """ |
| 344 warnings.simplefilter('ignore') | 334 warnings.simplefilter("ignore") |
| 345 | 335 |
| 346 with open(inputs, 'r') as param_handler: | 336 with open(inputs, "r") as param_handler: |
| 347 params = json.load(param_handler) | 337 params = json.load(param_handler) |
| 348 | 338 |
| 349 title = params['plotting_selection']['title'].strip() | 339 title = params["plotting_selection"]["title"].strip() |
| 350 plot_type = params['plotting_selection']['plot_type'] | 340 plot_type = params["plotting_selection"]["plot_type"] |
| 351 plot_format = params['plotting_selection']['plot_format'] | 341 plot_format = params["plotting_selection"]["plot_format"] |
| 352 | 342 |
| 353 if plot_type == 'feature_importances': | 343 if plot_type == "feature_importances": |
| 354 with open(infile_estimator, 'rb') as estimator_handler: | 344 with open(infile_estimator, "rb") as estimator_handler: |
| 355 estimator = load_model(estimator_handler) | 345 estimator = load_model(estimator_handler) |
| 356 | 346 |
| 357 column_option = (params['plotting_selection'] | 347 column_option = params["plotting_selection"]["column_selector_options"]["selected_column_selector_option"] |
| 358 ['column_selector_options'] | 348 if column_option in [ |
| 359 ['selected_column_selector_option']) | 349 "by_index_number", |
| 360 if column_option in ['by_index_number', 'all_but_by_index_number', | 350 "all_but_by_index_number", |
| 361 'by_header_name', 'all_but_by_header_name']: | 351 "by_header_name", |
| 362 c = (params['plotting_selection'] | 352 "all_but_by_header_name", |
| 363 ['column_selector_options']['col1']) | 353 ]: |
| 354 c = params["plotting_selection"]["column_selector_options"]["col1"] | |
| 364 else: | 355 else: |
| 365 c = None | 356 c = None |
| 366 | 357 |
| 367 _, input_df = read_columns(infile1, c=c, | 358 _, input_df = read_columns( |
| 368 c_option=column_option, | 359 infile1, |
| 369 return_df=True, | 360 c=c, |
| 370 sep='\t', header='infer', | 361 c_option=column_option, |
| 371 parse_dates=True) | 362 return_df=True, |
| 363 sep="\t", | |
| 364 header="infer", | |
| 365 parse_dates=True, | |
| 366 ) | |
| 372 | 367 |
| 373 feature_names = input_df.columns.values | 368 feature_names = input_df.columns.values |
| 374 | 369 |
| 375 if isinstance(estimator, Pipeline): | 370 if isinstance(estimator, Pipeline): |
| 376 for st in estimator.steps[:-1]: | 371 for st in estimator.steps[:-1]: |
| 377 if isinstance(st[-1], SelectorMixin): | 372 if isinstance(st[-1], SelectorMixin): |
| 378 mask = st[-1].get_support() | 373 mask = st[-1].get_support() |
| 379 feature_names = feature_names[mask] | 374 feature_names = feature_names[mask] |
| 380 estimator = estimator.steps[-1][-1] | 375 estimator = estimator.steps[-1][-1] |
| 381 | 376 |
| 382 if hasattr(estimator, 'coef_'): | 377 if hasattr(estimator, "coef_"): |
| 383 coefs = estimator.coef_ | 378 coefs = estimator.coef_ |
| 384 else: | 379 else: |
| 385 coefs = getattr(estimator, 'feature_importances_', None) | 380 coefs = getattr(estimator, "feature_importances_", None) |
| 386 if coefs is None: | 381 if coefs is None: |
| 387 raise RuntimeError('The classifier does not expose ' | 382 raise RuntimeError("The classifier does not expose " '"coef_" or "feature_importances_" ' "attributes") |
| 388 '"coef_" or "feature_importances_" ' | 383 |
| 389 'attributes') | 384 threshold = params["plotting_selection"]["threshold"] |
| 390 | |
| 391 threshold = params['plotting_selection']['threshold'] | |
| 392 if threshold is not None: | 385 if threshold is not None: |
| 393 mask = (coefs > threshold) | (coefs < -threshold) | 386 mask = (coefs > threshold) | (coefs < -threshold) |
| 394 coefs = coefs[mask] | 387 coefs = coefs[mask] |
| 395 feature_names = feature_names[mask] | 388 feature_names = feature_names[mask] |
| 396 | 389 |
| 397 # sort | 390 # sort |
| 398 indices = np.argsort(coefs)[::-1] | 391 indices = np.argsort(coefs)[::-1] |
| 399 | 392 |
| 400 trace = go.Bar(x=feature_names[indices], | 393 trace = go.Bar(x=feature_names[indices], y=coefs[indices]) |
| 401 y=coefs[indices]) | |
| 402 layout = go.Layout(title=title or "Feature Importances") | 394 layout = go.Layout(title=title or "Feature Importances") |
| 403 fig = go.Figure(data=[trace], layout=layout) | 395 fig = go.Figure(data=[trace], layout=layout) |
| 404 | 396 |
| 405 plotly.offline.plot(fig, filename="output.html", | 397 plotly.offline.plot(fig, filename="output.html", auto_open=False) |
| 406 auto_open=False) | |
| 407 # to be discovered by `from_work_dir` | 398 # to be discovered by `from_work_dir` |
| 408 os.rename('output.html', 'output') | 399 os.rename("output.html", "output") |
| 409 | 400 |
| 410 return 0 | 401 return 0 |
| 411 | 402 |
| 412 elif plot_type in ('pr_curve', 'roc_curve'): | 403 elif plot_type in ("pr_curve", "roc_curve"): |
| 413 df1 = pd.read_csv(infile1, sep='\t', header='infer') | 404 df1 = pd.read_csv(infile1, sep="\t", header="infer") |
| 414 df2 = pd.read_csv(infile2, sep='\t', header='infer').astype(np.float32) | 405 df2 = pd.read_csv(infile2, sep="\t", header="infer").astype(np.float32) |
| 415 | 406 |
| 416 minimum = params['plotting_selection']['report_minimum_n_positives'] | 407 minimum = params["plotting_selection"]["report_minimum_n_positives"] |
| 417 # filter out columns whose n_positives is beblow the threhold | 408 # filter out columns whose n_positives is beblow the threhold |
| 418 if minimum: | 409 if minimum: |
| 419 mask = df1.sum(axis=0) >= minimum | 410 mask = df1.sum(axis=0) >= minimum |
| 420 df1 = df1.loc[:, mask] | 411 df1 = df1.loc[:, mask] |
| 421 df2 = df2.loc[:, mask] | 412 df2 = df2.loc[:, mask] |
| 422 | 413 |
| 423 pos_label = params['plotting_selection']['pos_label'].strip() \ | 414 pos_label = params["plotting_selection"]["pos_label"].strip() or None |
| 424 or None | 415 |
| 425 | 416 if plot_type == "pr_curve": |
| 426 if plot_type == 'pr_curve': | 417 if plot_format == "plotly_html": |
| 427 if plot_format == 'plotly_html': | |
| 428 visualize_pr_curve_plotly(df1, df2, pos_label, title=title) | 418 visualize_pr_curve_plotly(df1, df2, pos_label, title=title) |
| 429 else: | 419 else: |
| 430 visualize_pr_curve_matplotlib(df1, df2, pos_label, title) | 420 visualize_pr_curve_matplotlib(df1, df2, pos_label, title) |
| 431 else: # 'roc_curve' | 421 else: # 'roc_curve' |
| 432 drop_intermediate = (params['plotting_selection'] | 422 drop_intermediate = params["plotting_selection"]["drop_intermediate"] |
| 433 ['drop_intermediate']) | 423 if plot_format == "plotly_html": |
| 434 if plot_format == 'plotly_html': | 424 visualize_roc_curve_plotly( |
| 435 visualize_roc_curve_plotly(df1, df2, pos_label, | 425 df1, |
| 436 drop_intermediate=drop_intermediate, | 426 df2, |
| 437 title=title) | 427 pos_label, |
| 428 drop_intermediate=drop_intermediate, | |
| 429 title=title, | |
| 430 ) | |
| 438 else: | 431 else: |
| 439 visualize_roc_curve_matplotlib( | 432 visualize_roc_curve_matplotlib( |
| 440 df1, df2, pos_label, | 433 df1, |
| 434 df2, | |
| 435 pos_label, | |
| 441 drop_intermediate=drop_intermediate, | 436 drop_intermediate=drop_intermediate, |
| 442 title=title) | 437 title=title, |
| 438 ) | |
| 443 | 439 |
| 444 return 0 | 440 return 0 |
| 445 | 441 |
| 446 elif plot_type == 'rfecv_gridscores': | 442 elif plot_type == "rfecv_gridscores": |
| 447 input_df = pd.read_csv(infile1, sep='\t', header='infer') | 443 input_df = pd.read_csv(infile1, sep="\t", header="infer") |
| 448 scores = input_df.iloc[:, 0] | 444 scores = input_df.iloc[:, 0] |
| 449 steps = params['plotting_selection']['steps'].strip() | 445 steps = params["plotting_selection"]["steps"].strip() |
| 450 steps = safe_eval(steps) | 446 steps = safe_eval(steps) |
| 451 | 447 |
| 452 data = go.Scatter( | 448 data = go.Scatter( |
| 453 x=list(range(len(scores))), | 449 x=list(range(len(scores))), |
| 454 y=scores, | 450 y=scores, |
| 455 text=[str(_) for _ in steps] if steps else None, | 451 text=[str(_) for _ in steps] if steps else None, |
| 456 mode='lines' | 452 mode="lines", |
| 457 ) | 453 ) |
| 458 layout = go.Layout( | 454 layout = go.Layout( |
| 459 xaxis=dict(title="Number of features selected"), | 455 xaxis=dict(title="Number of features selected"), |
| 460 yaxis=dict(title="Cross validation score"), | 456 yaxis=dict(title="Cross validation score"), |
| 461 title=dict( | 457 title=dict(text=title or None, x=0.5, y=0.92, xanchor="center", yanchor="top"), |
| 462 text=title or None, | 458 font=dict(family="sans-serif", size=11), |
| 463 x=0.5, | |
| 464 y=0.92, | |
| 465 xanchor='center', | |
| 466 yanchor='top' | |
| 467 ), | |
| 468 font=dict( | |
| 469 family="sans-serif", | |
| 470 size=11 | |
| 471 ), | |
| 472 # control backgroud colors | 459 # control backgroud colors |
| 473 plot_bgcolor='rgba(255,255,255,0)' | 460 plot_bgcolor="rgba(255,255,255,0)", |
| 474 ) | 461 ) |
| 475 """ | 462 """ |
| 476 # legend=dict( | 463 # legend=dict( |
| 477 # x=0.95, | 464 # x=0.95, |
| 478 # y=0, | 465 # y=0, |
| 487 # borderwidth=2 | 474 # borderwidth=2 |
| 488 # ), | 475 # ), |
| 489 """ | 476 """ |
| 490 | 477 |
| 491 fig = go.Figure(data=[data], layout=layout) | 478 fig = go.Figure(data=[data], layout=layout) |
| 492 plotly.offline.plot(fig, filename="output.html", | 479 plotly.offline.plot(fig, filename="output.html", auto_open=False) |
| 493 auto_open=False) | |
| 494 # to be discovered by `from_work_dir` | 480 # to be discovered by `from_work_dir` |
| 495 os.rename('output.html', 'output') | 481 os.rename("output.html", "output") |
| 496 | 482 |
| 497 return 0 | 483 return 0 |
| 498 | 484 |
| 499 elif plot_type == 'learning_curve': | 485 elif plot_type == "learning_curve": |
| 500 input_df = pd.read_csv(infile1, sep='\t', header='infer') | 486 input_df = pd.read_csv(infile1, sep="\t", header="infer") |
| 501 plot_std_err = params['plotting_selection']['plot_std_err'] | 487 plot_std_err = params["plotting_selection"]["plot_std_err"] |
| 502 data1 = go.Scatter( | 488 data1 = go.Scatter( |
| 503 x=input_df['train_sizes_abs'], | 489 x=input_df["train_sizes_abs"], |
| 504 y=input_df['mean_train_scores'], | 490 y=input_df["mean_train_scores"], |
| 505 error_y=dict( | 491 error_y=dict(array=input_df["std_train_scores"]) if plot_std_err else None, |
| 506 array=input_df['std_train_scores'] | 492 mode="lines", |
| 507 ) if plot_std_err else None, | |
| 508 mode='lines', | |
| 509 name="Train Scores", | 493 name="Train Scores", |
| 510 ) | 494 ) |
| 511 data2 = go.Scatter( | 495 data2 = go.Scatter( |
| 512 x=input_df['train_sizes_abs'], | 496 x=input_df["train_sizes_abs"], |
| 513 y=input_df['mean_test_scores'], | 497 y=input_df["mean_test_scores"], |
| 514 error_y=dict( | 498 error_y=dict(array=input_df["std_test_scores"]) if plot_std_err else None, |
| 515 array=input_df['std_test_scores'] | 499 mode="lines", |
| 516 ) if plot_std_err else None, | |
| 517 mode='lines', | |
| 518 name="Test Scores", | 500 name="Test Scores", |
| 519 ) | 501 ) |
| 520 layout = dict( | 502 layout = dict( |
| 521 xaxis=dict( | 503 xaxis=dict(title="No. of samples"), |
| 522 title='No. of samples' | 504 yaxis=dict(title="Performance Score"), |
| 523 ), | |
| 524 yaxis=dict( | |
| 525 title='Performance Score' | |
| 526 ), | |
| 527 # modify these configurations to customize image | 505 # modify these configurations to customize image |
| 528 title=dict( | 506 title=dict( |
| 529 text=title or 'Learning Curve', | 507 text=title or "Learning Curve", |
| 530 x=0.5, | 508 x=0.5, |
| 531 y=0.92, | 509 y=0.92, |
| 532 xanchor='center', | 510 xanchor="center", |
| 533 yanchor='top' | 511 yanchor="top", |
| 534 ), | 512 ), |
| 535 font=dict( | 513 font=dict(family="sans-serif", size=11), |
| 536 family="sans-serif", | |
| 537 size=11 | |
| 538 ), | |
| 539 # control backgroud colors | 514 # control backgroud colors |
| 540 plot_bgcolor='rgba(255,255,255,0)' | 515 plot_bgcolor="rgba(255,255,255,0)", |
| 541 ) | 516 ) |
| 542 """ | 517 """ |
| 543 # legend=dict( | 518 # legend=dict( |
| 544 # x=0.95, | 519 # x=0.95, |
| 545 # y=0, | 520 # y=0, |
| 554 # borderwidth=2 | 529 # borderwidth=2 |
| 555 # ), | 530 # ), |
| 556 """ | 531 """ |
| 557 | 532 |
| 558 fig = go.Figure(data=[data1, data2], layout=layout) | 533 fig = go.Figure(data=[data1, data2], layout=layout) |
| 559 plotly.offline.plot(fig, filename="output.html", | 534 plotly.offline.plot(fig, filename="output.html", auto_open=False) |
| 560 auto_open=False) | |
| 561 # to be discovered by `from_work_dir` | 535 # to be discovered by `from_work_dir` |
| 562 os.rename('output.html', 'output') | 536 os.rename("output.html", "output") |
| 563 | 537 |
| 564 return 0 | 538 return 0 |
| 565 | 539 |
| 566 elif plot_type == 'keras_plot_model': | 540 elif plot_type == "keras_plot_model": |
| 567 with open(model_config, 'r') as f: | 541 with open(model_config, "r") as f: |
| 568 model_str = f.read() | 542 model_str = f.read() |
| 569 model = model_from_json(model_str) | 543 model = model_from_json(model_str) |
| 570 plot_model(model, to_file="output.png") | 544 plot_model(model, to_file="output.png") |
| 571 os.rename('output.png', 'output') | 545 os.rename("output.png", "output") |
| 572 | 546 |
| 573 return 0 | 547 return 0 |
| 574 | 548 |
| 575 elif plot_type == 'classification_confusion_matrix': | 549 elif plot_type == "classification_confusion_matrix": |
| 576 plot_selection = params["plotting_selection"] | 550 plot_selection = params["plotting_selection"] |
| 577 input_true = get_dataframe(true_labels, plot_selection, "header_true", "column_selector_options_true") | 551 input_true = get_dataframe(true_labels, plot_selection, "header_true", "column_selector_options_true") |
| 578 header_predicted = 'infer' if plot_selection["header_predicted"] else None | 552 header_predicted = "infer" if plot_selection["header_predicted"] else None |
| 579 input_predicted = pd.read_csv(predicted_labels, sep='\t', parse_dates=True, header=header_predicted) | 553 input_predicted = pd.read_csv(predicted_labels, sep="\t", parse_dates=True, header=header_predicted) |
| 580 true_classes = input_true.iloc[:, -1].copy() | 554 true_classes = input_true.iloc[:, -1].copy() |
| 581 predicted_classes = input_predicted.iloc[:, -1].copy() | 555 predicted_classes = input_predicted.iloc[:, -1].copy() |
| 582 axis_labels = list(set(true_classes)) | 556 axis_labels = list(set(true_classes)) |
| 583 c_matrix = confusion_matrix(true_classes, predicted_classes) | 557 c_matrix = confusion_matrix(true_classes, predicted_classes) |
| 584 fig, ax = plt.subplots(figsize=(7, 7)) | 558 fig, ax = plt.subplots(figsize=(7, 7)) |
| 585 im = plt.imshow(c_matrix, cmap=plot_color) | 559 im = plt.imshow(c_matrix, cmap=plot_color) |
| 586 for i in range(len(c_matrix)): | 560 for i in range(len(c_matrix)): |
| 587 for j in range(len(c_matrix)): | 561 for j in range(len(c_matrix)): |
| 588 ax.text(j, i, c_matrix[i, j], ha="center", va="center", color="k") | 562 ax.text(j, i, c_matrix[i, j], ha="center", va="center", color="k") |
| 589 ax.set_ylabel('True class labels') | 563 ax.set_ylabel("True class labels") |
| 590 ax.set_xlabel('Predicted class labels') | 564 ax.set_xlabel("Predicted class labels") |
| 591 ax.set_title(title) | 565 ax.set_title(title) |
| 592 ax.set_xticks(axis_labels) | 566 ax.set_xticks(axis_labels) |
| 593 ax.set_yticks(axis_labels) | 567 ax.set_yticks(axis_labels) |
| 594 fig.colorbar(im, ax=ax) | 568 fig.colorbar(im, ax=ax) |
| 595 fig.tight_layout() | 569 fig.tight_layout() |
| 596 plt.savefig("output.png", dpi=125) | 570 plt.savefig("output.png", dpi=125) |
| 597 os.rename('output.png', 'output') | 571 os.rename("output.png", "output") |
| 598 | 572 |
| 599 return 0 | 573 return 0 |
| 600 | 574 |
| 601 # save pdf file to disk | 575 # save pdf file to disk |
| 602 # fig.write_image("image.pdf", format='pdf') | 576 # fig.write_image("image.pdf", format='pdf') |
| 603 # fig.write_image("image.pdf", format='pdf', width=340*2, height=226*2) | 577 # fig.write_image("image.pdf", format='pdf', width=340*2, height=226*2) |
| 604 | 578 |
| 605 | 579 |
| 606 if __name__ == '__main__': | 580 if __name__ == "__main__": |
| 607 aparser = argparse.ArgumentParser() | 581 aparser = argparse.ArgumentParser() |
| 608 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 582 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
| 609 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 583 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
| 610 aparser.add_argument("-X", "--infile1", dest="infile1") | 584 aparser.add_argument("-X", "--infile1", dest="infile1") |
| 611 aparser.add_argument("-y", "--infile2", dest="infile2") | 585 aparser.add_argument("-y", "--infile2", dest="infile2") |
| 621 aparser.add_argument("-pl", "--predicted_labels", dest="predicted_labels") | 595 aparser.add_argument("-pl", "--predicted_labels", dest="predicted_labels") |
| 622 aparser.add_argument("-pc", "--plot_color", dest="plot_color") | 596 aparser.add_argument("-pc", "--plot_color", dest="plot_color") |
| 623 aparser.add_argument("-pt", "--title", dest="title") | 597 aparser.add_argument("-pt", "--title", dest="title") |
| 624 args = aparser.parse_args() | 598 args = aparser.parse_args() |
| 625 | 599 |
| 626 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 600 main( |
| 627 args.outfile_result, outfile_object=args.outfile_object, | 601 args.inputs, |
| 628 groups=args.groups, ref_seq=args.ref_seq, intervals=args.intervals, | 602 args.infile_estimator, |
| 629 targets=args.targets, fasta_path=args.fasta_path, | 603 args.infile1, |
| 630 model_config=args.model_config, true_labels=args.true_labels, | 604 args.infile2, |
| 631 predicted_labels=args.predicted_labels, | 605 args.outfile_result, |
| 632 plot_color=args.plot_color, | 606 outfile_object=args.outfile_object, |
| 633 title=args.title) | 607 groups=args.groups, |
| 608 ref_seq=args.ref_seq, | |
| 609 intervals=args.intervals, | |
| 610 targets=args.targets, | |
| 611 fasta_path=args.fasta_path, | |
| 612 model_config=args.model_config, | |
| 613 true_labels=args.true_labels, | |
| 614 predicted_labels=args.predicted_labels, | |
| 615 plot_color=args.plot_color, | |
| 616 title=args.title, | |
| 617 ) |
