Mercurial > repos > bgruening > ml_visualization_ex
comparison test-data/pipeline_params18 @ 4:1b2f7d4ee4e7 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
| author | bgruening |
|---|---|
| date | Mon, 16 Dec 2019 10:01:02 +0000 |
| parents | |
| children | 8e7ae32df1ab |
comparison
equal
deleted
inserted
replaced
| 3:b2d539c75654 | 4:1b2f7d4ee4e7 |
|---|---|
| 1 Parameter Value | |
| 2 * memory memory: None | |
| 3 @ powertransformer powertransformer: PowerTransformer(copy=True, method='yeo-johnson', standardize=True) | |
| 4 * steps "steps: [('powertransformer', PowerTransformer(copy=True, method='yeo-johnson', standardize=True)), ('transformedtargetregressor', TransformedTargetRegressor(check_inverse=True, func=None, inverse_func=None, | |
| 5 regressor=RandomForestRegressor(bootstrap=True, | |
| 6 criterion='mse', | |
| 7 max_depth=None, | |
| 8 max_features='auto', | |
| 9 max_leaf_nodes=None, | |
| 10 min_impurity_decrease=0.0, | |
| 11 min_impurity_split=None, | |
| 12 min_samples_leaf=1, | |
| 13 min_samples_split=2, | |
| 14 min_weight_fraction_leaf=0.0, | |
| 15 n_estimators='warn', | |
| 16 n_jobs=1, | |
| 17 oob_score=False, | |
| 18 random_state=10, | |
| 19 verbose=0, | |
| 20 warm_start=False), | |
| 21 transformer=QuantileTransformer(copy=True, | |
| 22 ignore_implicit_zeros=False, | |
| 23 n_quantiles=1000, | |
| 24 output_distribution='uniform', | |
| 25 random_state=10, | |
| 26 subsample=100000)))]" | |
| 27 @ transformedtargetregressor "transformedtargetregressor: TransformedTargetRegressor(check_inverse=True, func=None, inverse_func=None, | |
| 28 regressor=RandomForestRegressor(bootstrap=True, | |
| 29 criterion='mse', | |
| 30 max_depth=None, | |
| 31 max_features='auto', | |
| 32 max_leaf_nodes=None, | |
| 33 min_impurity_decrease=0.0, | |
| 34 min_impurity_split=None, | |
| 35 min_samples_leaf=1, | |
| 36 min_samples_split=2, | |
| 37 min_weight_fraction_leaf=0.0, | |
| 38 n_estimators='warn', | |
| 39 n_jobs=1, | |
| 40 oob_score=False, | |
| 41 random_state=10, | |
| 42 verbose=0, | |
| 43 warm_start=False), | |
| 44 transformer=QuantileTransformer(copy=True, | |
| 45 ignore_implicit_zeros=False, | |
| 46 n_quantiles=1000, | |
| 47 output_distribution='uniform', | |
| 48 random_state=10, | |
| 49 subsample=100000))" | |
| 50 * verbose verbose: False | |
| 51 @ powertransformer__copy powertransformer__copy: True | |
| 52 @ powertransformer__method powertransformer__method: 'yeo-johnson' | |
| 53 @ powertransformer__standardize powertransformer__standardize: True | |
| 54 @ transformedtargetregressor__check_inverse transformedtargetregressor__check_inverse: True | |
| 55 @ transformedtargetregressor__func transformedtargetregressor__func: None | |
| 56 @ transformedtargetregressor__inverse_func transformedtargetregressor__inverse_func: None | |
| 57 @ transformedtargetregressor__regressor "transformedtargetregressor__regressor: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None, | |
| 58 max_features='auto', max_leaf_nodes=None, | |
| 59 min_impurity_decrease=0.0, min_impurity_split=None, | |
| 60 min_samples_leaf=1, min_samples_split=2, | |
| 61 min_weight_fraction_leaf=0.0, n_estimators='warn', | |
| 62 n_jobs=1, oob_score=False, random_state=10, verbose=0, | |
| 63 warm_start=False)" | |
| 64 @ transformedtargetregressor__regressor__bootstrap transformedtargetregressor__regressor__bootstrap: True | |
| 65 @ transformedtargetregressor__regressor__criterion transformedtargetregressor__regressor__criterion: 'mse' | |
| 66 @ transformedtargetregressor__regressor__max_depth transformedtargetregressor__regressor__max_depth: None | |
| 67 @ transformedtargetregressor__regressor__max_features transformedtargetregressor__regressor__max_features: 'auto' | |
| 68 @ transformedtargetregressor__regressor__max_leaf_nodes transformedtargetregressor__regressor__max_leaf_nodes: None | |
| 69 @ transformedtargetregressor__regressor__min_impurity_decrease transformedtargetregressor__regressor__min_impurity_decrease: 0.0 | |
| 70 @ transformedtargetregressor__regressor__min_impurity_split transformedtargetregressor__regressor__min_impurity_split: None | |
| 71 @ transformedtargetregressor__regressor__min_samples_leaf transformedtargetregressor__regressor__min_samples_leaf: 1 | |
| 72 @ transformedtargetregressor__regressor__min_samples_split transformedtargetregressor__regressor__min_samples_split: 2 | |
| 73 @ transformedtargetregressor__regressor__min_weight_fraction_leaf transformedtargetregressor__regressor__min_weight_fraction_leaf: 0.0 | |
| 74 @ transformedtargetregressor__regressor__n_estimators transformedtargetregressor__regressor__n_estimators: 'warn' | |
| 75 * transformedtargetregressor__regressor__n_jobs transformedtargetregressor__regressor__n_jobs: 1 | |
| 76 @ transformedtargetregressor__regressor__oob_score transformedtargetregressor__regressor__oob_score: False | |
| 77 @ transformedtargetregressor__regressor__random_state transformedtargetregressor__regressor__random_state: 10 | |
| 78 * transformedtargetregressor__regressor__verbose transformedtargetregressor__regressor__verbose: 0 | |
| 79 @ transformedtargetregressor__regressor__warm_start transformedtargetregressor__regressor__warm_start: False | |
| 80 @ transformedtargetregressor__transformer "transformedtargetregressor__transformer: QuantileTransformer(copy=True, ignore_implicit_zeros=False, n_quantiles=1000, | |
| 81 output_distribution='uniform', random_state=10, | |
| 82 subsample=100000)" | |
| 83 @ transformedtargetregressor__transformer__copy transformedtargetregressor__transformer__copy: True | |
| 84 @ transformedtargetregressor__transformer__ignore_implicit_zeros transformedtargetregressor__transformer__ignore_implicit_zeros: False | |
| 85 @ transformedtargetregressor__transformer__n_quantiles transformedtargetregressor__transformer__n_quantiles: 1000 | |
| 86 @ transformedtargetregressor__transformer__output_distribution transformedtargetregressor__transformer__output_distribution: 'uniform' | |
| 87 @ transformedtargetregressor__transformer__random_state transformedtargetregressor__transformer__random_state: 10 | |
| 88 @ transformedtargetregressor__transformer__subsample transformedtargetregressor__transformer__subsample: 100000 | |
| 89 Note: @, params eligible for search in searchcv tool. |
