Mercurial > repos > bgruening > keras_train_and_eval
comparison search_model_validation.py @ 0:5110698bc211 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
| author | bgruening |
|---|---|
| date | Mon, 16 Dec 2019 09:57:38 +0000 |
| parents | |
| children | 178ba0c5cc32 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:5110698bc211 |
|---|---|
| 1 import argparse | |
| 2 import collections | |
| 3 import imblearn | |
| 4 import joblib | |
| 5 import json | |
| 6 import numpy as np | |
| 7 import os | |
| 8 import pandas as pd | |
| 9 import pickle | |
| 10 import skrebate | |
| 11 import sys | |
| 12 import warnings | |
| 13 from scipy.io import mmread | |
| 14 from sklearn import (cluster, decomposition, feature_selection, | |
| 15 kernel_approximation, model_selection, preprocessing) | |
| 16 from sklearn.exceptions import FitFailedWarning | |
| 17 from sklearn.model_selection._validation import _score, cross_validate | |
| 18 from sklearn.model_selection import _search, _validation | |
| 19 from sklearn.pipeline import Pipeline | |
| 20 | |
| 21 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | |
| 22 read_columns, try_get_attr, get_module, | |
| 23 clean_params, get_main_estimator) | |
| 24 | |
| 25 | |
| 26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
| 27 setattr(_search, '_fit_and_score', _fit_and_score) | |
| 28 setattr(_validation, '_fit_and_score', _fit_and_score) | |
| 29 | |
| 30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
| 31 # handle disk cache | |
| 32 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
| 33 del os | |
| 34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
| 35 'nthread', 'callbacks') | |
| 36 | |
| 37 | |
| 38 def _eval_search_params(params_builder): | |
| 39 search_params = {} | |
| 40 | |
| 41 for p in params_builder['param_set']: | |
| 42 search_list = p['sp_list'].strip() | |
| 43 if search_list == '': | |
| 44 continue | |
| 45 | |
| 46 param_name = p['sp_name'] | |
| 47 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 48 print("Warning: `%s` is not eligible for search and was " | |
| 49 "omitted!" % param_name) | |
| 50 continue | |
| 51 | |
| 52 if not search_list.startswith(':'): | |
| 53 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 54 ev = safe_eval(search_list) | |
| 55 search_params[param_name] = ev | |
| 56 else: | |
| 57 # Have `:` before search list, asks for estimator evaluatio | |
| 58 safe_eval_es = SafeEval(load_estimators=True) | |
| 59 search_list = search_list[1:].strip() | |
| 60 # TODO maybe add regular express check | |
| 61 ev = safe_eval_es(search_list) | |
| 62 preprocessings = ( | |
| 63 preprocessing.StandardScaler(), preprocessing.Binarizer(), | |
| 64 preprocessing.MaxAbsScaler(), | |
| 65 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | |
| 66 preprocessing.PolynomialFeatures(), | |
| 67 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | |
| 68 feature_selection.GenericUnivariateSelect(), | |
| 69 feature_selection.SelectPercentile(), | |
| 70 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | |
| 71 feature_selection.SelectFwe(), | |
| 72 feature_selection.VarianceThreshold(), | |
| 73 decomposition.FactorAnalysis(random_state=0), | |
| 74 decomposition.FastICA(random_state=0), | |
| 75 decomposition.IncrementalPCA(), | |
| 76 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
| 77 decomposition.LatentDirichletAllocation( | |
| 78 random_state=0, n_jobs=N_JOBS), | |
| 79 decomposition.MiniBatchDictionaryLearning( | |
| 80 random_state=0, n_jobs=N_JOBS), | |
| 81 decomposition.MiniBatchSparsePCA( | |
| 82 random_state=0, n_jobs=N_JOBS), | |
| 83 decomposition.NMF(random_state=0), | |
| 84 decomposition.PCA(random_state=0), | |
| 85 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 86 decomposition.TruncatedSVD(random_state=0), | |
| 87 kernel_approximation.Nystroem(random_state=0), | |
| 88 kernel_approximation.RBFSampler(random_state=0), | |
| 89 kernel_approximation.AdditiveChi2Sampler(), | |
| 90 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
| 91 cluster.FeatureAgglomeration(), | |
| 92 skrebate.ReliefF(n_jobs=N_JOBS), | |
| 93 skrebate.SURF(n_jobs=N_JOBS), | |
| 94 skrebate.SURFstar(n_jobs=N_JOBS), | |
| 95 skrebate.MultiSURF(n_jobs=N_JOBS), | |
| 96 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
| 97 imblearn.under_sampling.ClusterCentroids( | |
| 98 random_state=0, n_jobs=N_JOBS), | |
| 99 imblearn.under_sampling.CondensedNearestNeighbour( | |
| 100 random_state=0, n_jobs=N_JOBS), | |
| 101 imblearn.under_sampling.EditedNearestNeighbours( | |
| 102 random_state=0, n_jobs=N_JOBS), | |
| 103 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
| 104 random_state=0, n_jobs=N_JOBS), | |
| 105 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
| 106 imblearn.under_sampling.InstanceHardnessThreshold( | |
| 107 random_state=0, n_jobs=N_JOBS), | |
| 108 imblearn.under_sampling.NearMiss( | |
| 109 random_state=0, n_jobs=N_JOBS), | |
| 110 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
| 111 random_state=0, n_jobs=N_JOBS), | |
| 112 imblearn.under_sampling.OneSidedSelection( | |
| 113 random_state=0, n_jobs=N_JOBS), | |
| 114 imblearn.under_sampling.RandomUnderSampler( | |
| 115 random_state=0), | |
| 116 imblearn.under_sampling.TomekLinks( | |
| 117 random_state=0, n_jobs=N_JOBS), | |
| 118 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
| 119 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
| 120 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
| 121 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 122 imblearn.over_sampling.BorderlineSMOTE( | |
| 123 random_state=0, n_jobs=N_JOBS), | |
| 124 imblearn.over_sampling.SMOTENC( | |
| 125 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
| 126 imblearn.combine.SMOTEENN(random_state=0), | |
| 127 imblearn.combine.SMOTETomek(random_state=0)) | |
| 128 newlist = [] | |
| 129 for obj in ev: | |
| 130 if obj is None: | |
| 131 newlist.append(None) | |
| 132 elif obj == 'all_0': | |
| 133 newlist.extend(preprocessings[0:35]) | |
| 134 elif obj == 'sk_prep_all': # no KernalCenter() | |
| 135 newlist.extend(preprocessings[0:7]) | |
| 136 elif obj == 'fs_all': | |
| 137 newlist.extend(preprocessings[7:14]) | |
| 138 elif obj == 'decomp_all': | |
| 139 newlist.extend(preprocessings[14:25]) | |
| 140 elif obj == 'k_appr_all': | |
| 141 newlist.extend(preprocessings[25:29]) | |
| 142 elif obj == 'reb_all': | |
| 143 newlist.extend(preprocessings[30:35]) | |
| 144 elif obj == 'imb_all': | |
| 145 newlist.extend(preprocessings[35:54]) | |
| 146 elif type(obj) is int and -1 < obj < len(preprocessings): | |
| 147 newlist.append(preprocessings[obj]) | |
| 148 elif hasattr(obj, 'get_params'): # user uploaded object | |
| 149 if 'n_jobs' in obj.get_params(): | |
| 150 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
| 151 else: | |
| 152 newlist.append(obj) | |
| 153 else: | |
| 154 sys.exit("Unsupported estimator type: %r" % (obj)) | |
| 155 | |
| 156 search_params[param_name] = newlist | |
| 157 | |
| 158 return search_params | |
| 159 | |
| 160 | |
| 161 def _handle_X_y(estimator, params, infile1, infile2, loaded_df={}, | |
| 162 ref_seq=None, intervals=None, targets=None, | |
| 163 fasta_path=None): | |
| 164 """read inputs | |
| 165 | |
| 166 Params | |
| 167 ------- | |
| 168 estimator : estimator object | |
| 169 params : dict | |
| 170 Galaxy tool parameter inputs | |
| 171 infile1 : str | |
| 172 File path to dataset containing features | |
| 173 infile2 : str | |
| 174 File path to dataset containing target values | |
| 175 loaded_df : dict | |
| 176 Contains loaded DataFrame objects with file path as keys | |
| 177 ref_seq : str | |
| 178 File path to dataset containing genome sequence file | |
| 179 interval : str | |
| 180 File path to dataset containing interval file | |
| 181 targets : str | |
| 182 File path to dataset compressed target bed file | |
| 183 fasta_path : str | |
| 184 File path to dataset containing fasta file | |
| 185 | |
| 186 | |
| 187 Returns | |
| 188 ------- | |
| 189 estimator : estimator object after setting new attributes | |
| 190 X : numpy array | |
| 191 y : numpy array | |
| 192 """ | |
| 193 estimator_params = estimator.get_params() | |
| 194 | |
| 195 input_type = params['input_options']['selected_input'] | |
| 196 # tabular input | |
| 197 if input_type == 'tabular': | |
| 198 header = 'infer' if params['input_options']['header1'] else None | |
| 199 column_option = (params['input_options']['column_selector_options_1'] | |
| 200 ['selected_column_selector_option']) | |
| 201 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 202 'by_header_name', 'all_but_by_header_name']: | |
| 203 c = params['input_options']['column_selector_options_1']['col1'] | |
| 204 else: | |
| 205 c = None | |
| 206 | |
| 207 df_key = infile1 + repr(header) | |
| 208 | |
| 209 if df_key in loaded_df: | |
| 210 infile1 = loaded_df[df_key] | |
| 211 | |
| 212 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 213 parse_dates=True) | |
| 214 loaded_df[df_key] = df | |
| 215 | |
| 216 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 217 # sparse input | |
| 218 elif input_type == 'sparse': | |
| 219 X = mmread(open(infile1, 'r')) | |
| 220 | |
| 221 # fasta_file input | |
| 222 elif input_type == 'seq_fasta': | |
| 223 pyfaidx = get_module('pyfaidx') | |
| 224 sequences = pyfaidx.Fasta(fasta_path) | |
| 225 n_seqs = len(sequences.keys()) | |
| 226 X = np.arange(n_seqs)[:, np.newaxis] | |
| 227 for param in estimator_params.keys(): | |
| 228 if param.endswith('fasta_path'): | |
| 229 estimator.set_params( | |
| 230 **{param: fasta_path}) | |
| 231 break | |
| 232 else: | |
| 233 raise ValueError( | |
| 234 "The selected estimator doesn't support " | |
| 235 "fasta file input! Please consider using " | |
| 236 "KerasGBatchClassifier with " | |
| 237 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 238 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 239 "in pipeline!") | |
| 240 | |
| 241 elif input_type == 'refseq_and_interval': | |
| 242 path_params = { | |
| 243 'data_batch_generator__ref_genome_path': ref_seq, | |
| 244 'data_batch_generator__intervals_path': intervals, | |
| 245 'data_batch_generator__target_path': targets | |
| 246 } | |
| 247 estimator.set_params(**path_params) | |
| 248 n_intervals = sum(1 for line in open(intervals)) | |
| 249 X = np.arange(n_intervals)[:, np.newaxis] | |
| 250 | |
| 251 # Get target y | |
| 252 header = 'infer' if params['input_options']['header2'] else None | |
| 253 column_option = (params['input_options']['column_selector_options_2'] | |
| 254 ['selected_column_selector_option2']) | |
| 255 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 256 'by_header_name', 'all_but_by_header_name']: | |
| 257 c = params['input_options']['column_selector_options_2']['col2'] | |
| 258 else: | |
| 259 c = None | |
| 260 | |
| 261 df_key = infile2 + repr(header) | |
| 262 if df_key in loaded_df: | |
| 263 infile2 = loaded_df[df_key] | |
| 264 else: | |
| 265 infile2 = pd.read_csv(infile2, sep='\t', | |
| 266 header=header, parse_dates=True) | |
| 267 loaded_df[df_key] = infile2 | |
| 268 | |
| 269 y = read_columns( | |
| 270 infile2, | |
| 271 c=c, | |
| 272 c_option=column_option, | |
| 273 sep='\t', | |
| 274 header=header, | |
| 275 parse_dates=True) | |
| 276 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 277 y = y.ravel() | |
| 278 if input_type == 'refseq_and_interval': | |
| 279 estimator.set_params( | |
| 280 data_batch_generator__features=y.ravel().tolist()) | |
| 281 y = None | |
| 282 # end y | |
| 283 | |
| 284 return estimator, X, y | |
| 285 | |
| 286 | |
| 287 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score='raise', | |
| 288 outfile=None): | |
| 289 """Do outer cross-validation for nested CV | |
| 290 | |
| 291 Parameters | |
| 292 ---------- | |
| 293 searcher : object | |
| 294 SearchCV object | |
| 295 X : numpy array | |
| 296 Containing features | |
| 297 y : numpy array | |
| 298 Target values or labels | |
| 299 outer_cv : int or CV splitter | |
| 300 Control the cv splitting | |
| 301 scoring : object | |
| 302 Scorer | |
| 303 error_score: str, float or numpy float | |
| 304 Whether to raise fit error or return an value | |
| 305 outfile : str | |
| 306 File path to store the restuls | |
| 307 """ | |
| 308 if error_score == 'raise': | |
| 309 rval = cross_validate( | |
| 310 searcher, X, y, scoring=scoring, | |
| 311 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | |
| 312 error_score=error_score) | |
| 313 else: | |
| 314 warnings.simplefilter('always', FitFailedWarning) | |
| 315 with warnings.catch_warnings(record=True) as w: | |
| 316 try: | |
| 317 rval = cross_validate( | |
| 318 searcher, X, y, | |
| 319 scoring=scoring, | |
| 320 cv=outer_cv, n_jobs=N_JOBS, | |
| 321 verbose=0, | |
| 322 error_score=error_score) | |
| 323 except ValueError: | |
| 324 pass | |
| 325 for warning in w: | |
| 326 print(repr(warning.message)) | |
| 327 | |
| 328 keys = list(rval.keys()) | |
| 329 for k in keys: | |
| 330 if k.startswith('test'): | |
| 331 rval['mean_' + k] = np.mean(rval[k]) | |
| 332 rval['std_' + k] = np.std(rval[k]) | |
| 333 if k.endswith('time'): | |
| 334 rval.pop(k) | |
| 335 rval = pd.DataFrame(rval) | |
| 336 rval = rval[sorted(rval.columns)] | |
| 337 rval.to_csv(path_or_buf=outfile, sep='\t', header=True, index=False) | |
| 338 | |
| 339 | |
| 340 def _do_train_test_split_val(searcher, X, y, params, error_score='raise', | |
| 341 primary_scoring=None, groups=None, | |
| 342 outfile=None): | |
| 343 """ do train test split, searchCV validates on the train and then use | |
| 344 the best_estimator_ to evaluate on the test | |
| 345 | |
| 346 Returns | |
| 347 -------- | |
| 348 Fitted SearchCV object | |
| 349 """ | |
| 350 train_test_split = try_get_attr( | |
| 351 'galaxy_ml.model_validations', 'train_test_split') | |
| 352 split_options = params['outer_split'] | |
| 353 | |
| 354 # splits | |
| 355 if split_options['shuffle'] == 'stratified': | |
| 356 split_options['labels'] = y | |
| 357 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 358 elif split_options['shuffle'] == 'group': | |
| 359 if groups is None: | |
| 360 raise ValueError("No group based CV option was choosen for " | |
| 361 "group shuffle!") | |
| 362 split_options['labels'] = groups | |
| 363 if y is None: | |
| 364 X, X_test, groups, _ =\ | |
| 365 train_test_split(X, groups, **split_options) | |
| 366 else: | |
| 367 X, X_test, y, y_test, groups, _ =\ | |
| 368 train_test_split(X, y, groups, **split_options) | |
| 369 else: | |
| 370 if split_options['shuffle'] == 'None': | |
| 371 split_options['shuffle'] = None | |
| 372 X, X_test, y, y_test =\ | |
| 373 train_test_split(X, y, **split_options) | |
| 374 | |
| 375 if error_score == 'raise': | |
| 376 searcher.fit(X, y, groups=groups) | |
| 377 else: | |
| 378 warnings.simplefilter('always', FitFailedWarning) | |
| 379 with warnings.catch_warnings(record=True) as w: | |
| 380 try: | |
| 381 searcher.fit(X, y, groups=groups) | |
| 382 except ValueError: | |
| 383 pass | |
| 384 for warning in w: | |
| 385 print(repr(warning.message)) | |
| 386 | |
| 387 scorer_ = searcher.scorer_ | |
| 388 if isinstance(scorer_, collections.Mapping): | |
| 389 is_multimetric = True | |
| 390 else: | |
| 391 is_multimetric = False | |
| 392 | |
| 393 best_estimator_ = getattr(searcher, 'best_estimator_') | |
| 394 | |
| 395 # TODO Solve deep learning models in pipeline | |
| 396 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier': | |
| 397 test_score = best_estimator_.evaluate( | |
| 398 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
| 399 else: | |
| 400 test_score = _score(best_estimator_, X_test, | |
| 401 y_test, scorer_, | |
| 402 is_multimetric=is_multimetric) | |
| 403 | |
| 404 if not is_multimetric: | |
| 405 test_score = {primary_scoring: test_score} | |
| 406 for key, value in test_score.items(): | |
| 407 test_score[key] = [value] | |
| 408 result_df = pd.DataFrame(test_score) | |
| 409 result_df.to_csv(path_or_buf=outfile, sep='\t', header=True, | |
| 410 index=False) | |
| 411 | |
| 412 return searcher | |
| 413 | |
| 414 | |
| 415 def main(inputs, infile_estimator, infile1, infile2, | |
| 416 outfile_result, outfile_object=None, | |
| 417 outfile_weights=None, groups=None, | |
| 418 ref_seq=None, intervals=None, targets=None, | |
| 419 fasta_path=None): | |
| 420 """ | |
| 421 Parameter | |
| 422 --------- | |
| 423 inputs : str | |
| 424 File path to galaxy tool parameter | |
| 425 | |
| 426 infile_estimator : str | |
| 427 File path to estimator | |
| 428 | |
| 429 infile1 : str | |
| 430 File path to dataset containing features | |
| 431 | |
| 432 infile2 : str | |
| 433 File path to dataset containing target values | |
| 434 | |
| 435 outfile_result : str | |
| 436 File path to save the results, either cv_results or test result | |
| 437 | |
| 438 outfile_object : str, optional | |
| 439 File path to save searchCV object | |
| 440 | |
| 441 outfile_weights : str, optional | |
| 442 File path to save model weights | |
| 443 | |
| 444 groups : str | |
| 445 File path to dataset containing groups labels | |
| 446 | |
| 447 ref_seq : str | |
| 448 File path to dataset containing genome sequence file | |
| 449 | |
| 450 intervals : str | |
| 451 File path to dataset containing interval file | |
| 452 | |
| 453 targets : str | |
| 454 File path to dataset compressed target bed file | |
| 455 | |
| 456 fasta_path : str | |
| 457 File path to dataset containing fasta file | |
| 458 """ | |
| 459 warnings.simplefilter('ignore') | |
| 460 | |
| 461 # store read dataframe object | |
| 462 loaded_df = {} | |
| 463 | |
| 464 with open(inputs, 'r') as param_handler: | |
| 465 params = json.load(param_handler) | |
| 466 | |
| 467 # Override the refit parameter | |
| 468 params['search_schemes']['options']['refit'] = True \ | |
| 469 if params['save'] != 'nope' else False | |
| 470 | |
| 471 with open(infile_estimator, 'rb') as estimator_handler: | |
| 472 estimator = load_model(estimator_handler) | |
| 473 | |
| 474 optimizer = params['search_schemes']['selected_search_scheme'] | |
| 475 optimizer = getattr(model_selection, optimizer) | |
| 476 | |
| 477 # handle gridsearchcv options | |
| 478 options = params['search_schemes']['options'] | |
| 479 | |
| 480 if groups: | |
| 481 header = 'infer' if (options['cv_selector']['groups_selector'] | |
| 482 ['header_g']) else None | |
| 483 column_option = (options['cv_selector']['groups_selector'] | |
| 484 ['column_selector_options_g'] | |
| 485 ['selected_column_selector_option_g']) | |
| 486 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 487 'by_header_name', 'all_but_by_header_name']: | |
| 488 c = (options['cv_selector']['groups_selector'] | |
| 489 ['column_selector_options_g']['col_g']) | |
| 490 else: | |
| 491 c = None | |
| 492 | |
| 493 df_key = groups + repr(header) | |
| 494 | |
| 495 groups = pd.read_csv(groups, sep='\t', header=header, | |
| 496 parse_dates=True) | |
| 497 loaded_df[df_key] = groups | |
| 498 | |
| 499 groups = read_columns( | |
| 500 groups, | |
| 501 c=c, | |
| 502 c_option=column_option, | |
| 503 sep='\t', | |
| 504 header=header, | |
| 505 parse_dates=True) | |
| 506 groups = groups.ravel() | |
| 507 options['cv_selector']['groups_selector'] = groups | |
| 508 | |
| 509 splitter, groups = get_cv(options.pop('cv_selector')) | |
| 510 options['cv'] = splitter | |
| 511 primary_scoring = options['scoring']['primary_scoring'] | |
| 512 options['scoring'] = get_scoring(options['scoring']) | |
| 513 if options['error_score']: | |
| 514 options['error_score'] = 'raise' | |
| 515 else: | |
| 516 options['error_score'] = np.NaN | |
| 517 if options['refit'] and isinstance(options['scoring'], dict): | |
| 518 options['refit'] = primary_scoring | |
| 519 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | |
| 520 options['pre_dispatch'] = None | |
| 521 | |
| 522 params_builder = params['search_schemes']['search_params_builder'] | |
| 523 param_grid = _eval_search_params(params_builder) | |
| 524 | |
| 525 estimator = clean_params(estimator) | |
| 526 | |
| 527 # save the SearchCV object without fit | |
| 528 if params['save'] == 'save_no_fit': | |
| 529 searcher = optimizer(estimator, param_grid, **options) | |
| 530 print(searcher) | |
| 531 with open(outfile_object, 'wb') as output_handler: | |
| 532 pickle.dump(searcher, output_handler, | |
| 533 pickle.HIGHEST_PROTOCOL) | |
| 534 return 0 | |
| 535 | |
| 536 # read inputs and loads new attributes, like paths | |
| 537 estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, | |
| 538 loaded_df=loaded_df, ref_seq=ref_seq, | |
| 539 intervals=intervals, targets=targets, | |
| 540 fasta_path=fasta_path) | |
| 541 | |
| 542 # cache iraps_core fits could increase search speed significantly | |
| 543 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 544 main_est = get_main_estimator(estimator) | |
| 545 if main_est.__class__.__name__ == 'IRAPSClassifier': | |
| 546 main_est.set_params(memory=memory) | |
| 547 | |
| 548 searcher = optimizer(estimator, param_grid, **options) | |
| 549 | |
| 550 split_mode = params['outer_split'].pop('split_mode') | |
| 551 | |
| 552 if split_mode == 'nested_cv': | |
| 553 # make sure refit is choosen | |
| 554 # this could be True for sklearn models, but not the case for | |
| 555 # deep learning models | |
| 556 if not options['refit'] and \ | |
| 557 not all(hasattr(estimator, attr) | |
| 558 for attr in ('config', 'model_type')): | |
| 559 warnings.warn("Refit is change to `True` for nested validation!") | |
| 560 setattr(searcher, 'refit', True) | |
| 561 | |
| 562 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | |
| 563 # nested CV, outer cv using cross_validate | |
| 564 if options['error_score'] == 'raise': | |
| 565 rval = cross_validate( | |
| 566 searcher, X, y, scoring=options['scoring'], | |
| 567 cv=outer_cv, n_jobs=N_JOBS, | |
| 568 verbose=options['verbose'], | |
| 569 return_estimator=(params['save'] == 'save_estimator'), | |
| 570 error_score=options['error_score'], | |
| 571 return_train_score=True) | |
| 572 else: | |
| 573 warnings.simplefilter('always', FitFailedWarning) | |
| 574 with warnings.catch_warnings(record=True) as w: | |
| 575 try: | |
| 576 rval = cross_validate( | |
| 577 searcher, X, y, | |
| 578 scoring=options['scoring'], | |
| 579 cv=outer_cv, n_jobs=N_JOBS, | |
| 580 verbose=options['verbose'], | |
| 581 return_estimator=(params['save'] == 'save_estimator'), | |
| 582 error_score=options['error_score'], | |
| 583 return_train_score=True) | |
| 584 except ValueError: | |
| 585 pass | |
| 586 for warning in w: | |
| 587 print(repr(warning.message)) | |
| 588 | |
| 589 fitted_searchers = rval.pop('estimator', []) | |
| 590 if fitted_searchers: | |
| 591 import os | |
| 592 pwd = os.getcwd() | |
| 593 save_dir = os.path.join(pwd, 'cv_results_in_folds') | |
| 594 try: | |
| 595 os.mkdir(save_dir) | |
| 596 for idx, obj in enumerate(fitted_searchers): | |
| 597 target_name = 'cv_results_' + '_' + 'split%d' % idx | |
| 598 target_path = os.path.join(pwd, save_dir, target_name) | |
| 599 cv_results_ = getattr(obj, 'cv_results_', None) | |
| 600 if not cv_results_: | |
| 601 print("%s is not available" % target_name) | |
| 602 continue | |
| 603 cv_results_ = pd.DataFrame(cv_results_) | |
| 604 cv_results_ = cv_results_[sorted(cv_results_.columns)] | |
| 605 cv_results_.to_csv(target_path, sep='\t', header=True, | |
| 606 index=False) | |
| 607 except Exception as e: | |
| 608 print(e) | |
| 609 finally: | |
| 610 del os | |
| 611 | |
| 612 keys = list(rval.keys()) | |
| 613 for k in keys: | |
| 614 if k.startswith('test'): | |
| 615 rval['mean_' + k] = np.mean(rval[k]) | |
| 616 rval['std_' + k] = np.std(rval[k]) | |
| 617 if k.endswith('time'): | |
| 618 rval.pop(k) | |
| 619 rval = pd.DataFrame(rval) | |
| 620 rval = rval[sorted(rval.columns)] | |
| 621 rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, | |
| 622 index=False) | |
| 623 | |
| 624 return 0 | |
| 625 | |
| 626 # deprecate train test split mode | |
| 627 """searcher = _do_train_test_split_val( | |
| 628 searcher, X, y, params, | |
| 629 primary_scoring=primary_scoring, | |
| 630 error_score=options['error_score'], | |
| 631 groups=groups, | |
| 632 outfile=outfile_result)""" | |
| 633 | |
| 634 # no outer split | |
| 635 else: | |
| 636 searcher.set_params(n_jobs=N_JOBS) | |
| 637 if options['error_score'] == 'raise': | |
| 638 searcher.fit(X, y, groups=groups) | |
| 639 else: | |
| 640 warnings.simplefilter('always', FitFailedWarning) | |
| 641 with warnings.catch_warnings(record=True) as w: | |
| 642 try: | |
| 643 searcher.fit(X, y, groups=groups) | |
| 644 except ValueError: | |
| 645 pass | |
| 646 for warning in w: | |
| 647 print(repr(warning.message)) | |
| 648 | |
| 649 cv_results = pd.DataFrame(searcher.cv_results_) | |
| 650 cv_results = cv_results[sorted(cv_results.columns)] | |
| 651 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 652 header=True, index=False) | |
| 653 | |
| 654 memory.clear(warn=False) | |
| 655 | |
| 656 # output best estimator, and weights if applicable | |
| 657 if outfile_object: | |
| 658 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
| 659 if not best_estimator_: | |
| 660 warnings.warn("GridSearchCV object has no attribute " | |
| 661 "'best_estimator_', because either it's " | |
| 662 "nested gridsearch or `refit` is False!") | |
| 663 return | |
| 664 | |
| 665 # clean prams | |
| 666 best_estimator_ = clean_params(best_estimator_) | |
| 667 | |
| 668 main_est = get_main_estimator(best_estimator_) | |
| 669 | |
| 670 if hasattr(main_est, 'model_') \ | |
| 671 and hasattr(main_est, 'save_weights'): | |
| 672 if outfile_weights: | |
| 673 main_est.save_weights(outfile_weights) | |
| 674 del main_est.model_ | |
| 675 del main_est.fit_params | |
| 676 del main_est.model_class_ | |
| 677 del main_est.validation_data | |
| 678 if getattr(main_est, 'data_generator_', None): | |
| 679 del main_est.data_generator_ | |
| 680 | |
| 681 with open(outfile_object, 'wb') as output_handler: | |
| 682 print("Best estimator is saved: %s " % repr(best_estimator_)) | |
| 683 pickle.dump(best_estimator_, output_handler, | |
| 684 pickle.HIGHEST_PROTOCOL) | |
| 685 | |
| 686 | |
| 687 if __name__ == '__main__': | |
| 688 aparser = argparse.ArgumentParser() | |
| 689 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 690 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 691 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 692 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 693 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 694 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 695 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 696 aparser.add_argument("-g", "--groups", dest="groups") | |
| 697 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 698 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 699 aparser.add_argument("-t", "--targets", dest="targets") | |
| 700 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 701 args = aparser.parse_args() | |
| 702 | |
| 703 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
| 704 args.outfile_result, outfile_object=args.outfile_object, | |
| 705 outfile_weights=args.outfile_weights, groups=args.groups, | |
| 706 ref_seq=args.ref_seq, intervals=args.intervals, | |
| 707 targets=args.targets, fasta_path=args.fasta_path) |
