Mercurial > repos > bgruening > keras_model_builder
comparison model_prediction.py @ 0:ac8bef635fcb draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
| author | bgruening |
|---|---|
| date | Fri, 09 Aug 2019 06:22:23 -0400 |
| parents | |
| children | 90da8d8aa664 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:ac8bef635fcb |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import numpy as np | |
| 4 import pandas as pd | |
| 5 import warnings | |
| 6 | |
| 7 from scipy.io import mmread | |
| 8 from sklearn.pipeline import Pipeline | |
| 9 | |
| 10 from galaxy_ml.utils import (load_model, read_columns, | |
| 11 get_module, try_get_attr) | |
| 12 | |
| 13 | |
| 14 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 15 | |
| 16 | |
| 17 def main(inputs, infile_estimator, outfile_predict, | |
| 18 infile_weights=None, infile1=None, | |
| 19 fasta_path=None, ref_seq=None, | |
| 20 vcf_path=None): | |
| 21 """ | |
| 22 Parameter | |
| 23 --------- | |
| 24 inputs : str | |
| 25 File path to galaxy tool parameter | |
| 26 | |
| 27 infile_estimator : strgit | |
| 28 File path to trained estimator input | |
| 29 | |
| 30 outfile_predict : str | |
| 31 File path to save the prediction results, tabular | |
| 32 | |
| 33 infile_weights : str | |
| 34 File path to weights input | |
| 35 | |
| 36 infile1 : str | |
| 37 File path to dataset containing features | |
| 38 | |
| 39 fasta_path : str | |
| 40 File path to dataset containing fasta file | |
| 41 | |
| 42 ref_seq : str | |
| 43 File path to dataset containing the reference genome sequence. | |
| 44 | |
| 45 vcf_path : str | |
| 46 File path to dataset containing variants info. | |
| 47 """ | |
| 48 warnings.filterwarnings('ignore') | |
| 49 | |
| 50 with open(inputs, 'r') as param_handler: | |
| 51 params = json.load(param_handler) | |
| 52 | |
| 53 # load model | |
| 54 with open(infile_estimator, 'rb') as est_handler: | |
| 55 estimator = load_model(est_handler) | |
| 56 | |
| 57 main_est = estimator | |
| 58 if isinstance(estimator, Pipeline): | |
| 59 main_est = estimator.steps[-1][-1] | |
| 60 if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): | |
| 61 if not infile_weights or infile_weights == 'None': | |
| 62 raise ValueError("The selected model skeleton asks for weights, " | |
| 63 "but dataset for weights wan not selected!") | |
| 64 main_est.load_weights(infile_weights) | |
| 65 | |
| 66 # handle data input | |
| 67 input_type = params['input_options']['selected_input'] | |
| 68 # tabular input | |
| 69 if input_type == 'tabular': | |
| 70 header = 'infer' if params['input_options']['header1'] else None | |
| 71 column_option = (params['input_options'] | |
| 72 ['column_selector_options_1'] | |
| 73 ['selected_column_selector_option']) | |
| 74 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 75 'by_header_name', 'all_but_by_header_name']: | |
| 76 c = params['input_options']['column_selector_options_1']['col1'] | |
| 77 else: | |
| 78 c = None | |
| 79 | |
| 80 df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) | |
| 81 | |
| 82 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 83 | |
| 84 if params['method'] == 'predict': | |
| 85 preds = estimator.predict(X) | |
| 86 else: | |
| 87 preds = estimator.predict_proba(X) | |
| 88 | |
| 89 # sparse input | |
| 90 elif input_type == 'sparse': | |
| 91 X = mmread(open(infile1, 'r')) | |
| 92 if params['method'] == 'predict': | |
| 93 preds = estimator.predict(X) | |
| 94 else: | |
| 95 preds = estimator.predict_proba(X) | |
| 96 | |
| 97 # fasta input | |
| 98 elif input_type == 'seq_fasta': | |
| 99 if not hasattr(estimator, 'data_batch_generator'): | |
| 100 raise ValueError( | |
| 101 "To do prediction on sequences in fasta input, " | |
| 102 "the estimator must be a `KerasGBatchClassifier`" | |
| 103 "equipped with data_batch_generator!") | |
| 104 pyfaidx = get_module('pyfaidx') | |
| 105 sequences = pyfaidx.Fasta(fasta_path) | |
| 106 n_seqs = len(sequences.keys()) | |
| 107 X = np.arange(n_seqs)[:, np.newaxis] | |
| 108 seq_length = estimator.data_batch_generator.seq_length | |
| 109 batch_size = getattr(estimator, 'batch_size', 32) | |
| 110 steps = (n_seqs + batch_size - 1) // batch_size | |
| 111 | |
| 112 seq_type = params['input_options']['seq_type'] | |
| 113 klass = try_get_attr( | |
| 114 'galaxy_ml.preprocessors', seq_type) | |
| 115 | |
| 116 pred_data_generator = klass( | |
| 117 fasta_path, seq_length=seq_length) | |
| 118 | |
| 119 if params['method'] == 'predict': | |
| 120 preds = estimator.predict( | |
| 121 X, data_generator=pred_data_generator, steps=steps) | |
| 122 else: | |
| 123 preds = estimator.predict_proba( | |
| 124 X, data_generator=pred_data_generator, steps=steps) | |
| 125 | |
| 126 # vcf input | |
| 127 elif input_type == 'variant_effect': | |
| 128 klass = try_get_attr('galaxy_ml.preprocessors', | |
| 129 'GenomicVariantBatchGenerator') | |
| 130 | |
| 131 options = params['input_options'] | |
| 132 options.pop('selected_input') | |
| 133 if options['blacklist_regions'] == 'none': | |
| 134 options['blacklist_regions'] = None | |
| 135 | |
| 136 pred_data_generator = klass( | |
| 137 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) | |
| 138 | |
| 139 pred_data_generator.fit() | |
| 140 | |
| 141 preds = estimator.model_.predict_generator( | |
| 142 pred_data_generator.flow(batch_size=32), | |
| 143 workers=N_JOBS, | |
| 144 use_multiprocessing=True) | |
| 145 | |
| 146 if preds.min() < 0. or preds.max() > 1.: | |
| 147 warnings.warn('Network returning invalid probability values. ' | |
| 148 'The last layer might not normalize predictions ' | |
| 149 'into probabilities ' | |
| 150 '(like softmax or sigmoid would).') | |
| 151 | |
| 152 if params['method'] == 'predict_proba' and preds.shape[1] == 1: | |
| 153 # first column is probability of class 0 and second is of class 1 | |
| 154 preds = np.hstack([1 - preds, preds]) | |
| 155 | |
| 156 elif params['method'] == 'predict': | |
| 157 if preds.shape[-1] > 1: | |
| 158 # if the last activation is `softmax`, the sum of all | |
| 159 # probibilities will 1, the classification is considered as | |
| 160 # multi-class problem, otherwise, we take it as multi-label. | |
| 161 act = getattr(estimator.model_.layers[-1], 'activation', None) | |
| 162 if act and act.__name__ == 'softmax': | |
| 163 classes = preds.argmax(axis=-1) | |
| 164 else: | |
| 165 preds = (preds > 0.5).astype('int32') | |
| 166 else: | |
| 167 classes = (preds > 0.5).astype('int32') | |
| 168 | |
| 169 preds = estimator.classes_[classes] | |
| 170 # end input | |
| 171 | |
| 172 # output | |
| 173 if input_type == 'variant_effect': # TODO: save in batchs | |
| 174 rval = pd.DataFrame(preds) | |
| 175 meta = pd.DataFrame( | |
| 176 pred_data_generator.variants, | |
| 177 columns=['chrom', 'pos', 'name', 'ref', 'alt', 'strand']) | |
| 178 | |
| 179 rval = pd.concat([meta, rval], axis=1) | |
| 180 | |
| 181 elif len(preds.shape) == 1: | |
| 182 rval = pd.DataFrame(preds, columns=['Predicted']) | |
| 183 else: | |
| 184 rval = pd.DataFrame(preds) | |
| 185 | |
| 186 rval.to_csv(outfile_predict, sep='\t', | |
| 187 header=True, index=False) | |
| 188 | |
| 189 | |
| 190 if __name__ == '__main__': | |
| 191 aparser = argparse.ArgumentParser() | |
| 192 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 193 aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") | |
| 194 aparser.add_argument("-w", "--infile_weights", dest="infile_weights") | |
| 195 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 196 aparser.add_argument("-O", "--outfile_predict", dest="outfile_predict") | |
| 197 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 198 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 199 aparser.add_argument("-v", "--vcf_path", dest="vcf_path") | |
| 200 args = aparser.parse_args() | |
| 201 | |
| 202 main(args.inputs, args.infile_estimator, args.outfile_predict, | |
| 203 infile_weights=args.infile_weights, infile1=args.infile1, | |
| 204 fasta_path=args.fasta_path, ref_seq=args.ref_seq, | |
| 205 vcf_path=args.vcf_path) |
