Mercurial > repos > bgruening > keras_model_builder
comparison simple_model_fit.py @ 9:9ac42e46dfbd draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
| author | bgruening |
|---|---|
| date | Fri, 30 Apr 2021 23:53:49 +0000 |
| parents | ebe52da3c0bb |
| children | ebd3bd2f2985 |
comparison
equal
deleted
inserted
replaced
| 8:ebe52da3c0bb | 9:9ac42e46dfbd |
|---|---|
| 4 | 4 |
| 5 import pandas as pd | 5 import pandas as pd |
| 6 from galaxy_ml.utils import load_model, read_columns | 6 from galaxy_ml.utils import load_model, read_columns |
| 7 from scipy.io import mmread | 7 from scipy.io import mmread |
| 8 from sklearn.pipeline import Pipeline | 8 from sklearn.pipeline import Pipeline |
| 9 | |
| 10 | 9 |
| 11 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | 10 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) |
| 12 | 11 |
| 13 | 12 |
| 14 # TODO import from galaxy_ml.utils in future versions | 13 # TODO import from galaxy_ml.utils in future versions |
| 34 for name, p in estimator_params.items(): | 33 for name, p in estimator_params.items(): |
| 35 # all potential unauthorized file write | 34 # all potential unauthorized file write |
| 36 if name == "memory" or name.endswith("__memory") or name.endswith("_path"): | 35 if name == "memory" or name.endswith("__memory") or name.endswith("_path"): |
| 37 new_p = {name: None} | 36 new_p = {name: None} |
| 38 estimator.set_params(**new_p) | 37 estimator.set_params(**new_p) |
| 39 elif n_jobs is not None and (name == 'n_jobs' or name.endswith('__n_jobs')): | 38 elif n_jobs is not None and (name == "n_jobs" or name.endswith("__n_jobs")): |
| 40 new_p = {name: n_jobs} | 39 new_p = {name: n_jobs} |
| 41 estimator.set_params(**new_p) | 40 estimator.set_params(**new_p) |
| 42 elif name.endswith("callbacks"): | 41 elif name.endswith("callbacks"): |
| 43 for cb in p: | 42 for cb in p: |
| 44 cb_type = cb["callback_selection"]["callback_type"] | 43 cb_type = cb["callback_selection"]["callback_type"] |
| 66 | 65 |
| 67 input_type = params["input_options"]["selected_input"] | 66 input_type = params["input_options"]["selected_input"] |
| 68 # tabular input | 67 # tabular input |
| 69 if input_type == "tabular": | 68 if input_type == "tabular": |
| 70 header = "infer" if params["input_options"]["header1"] else None | 69 header = "infer" if params["input_options"]["header1"] else None |
| 71 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] | 70 column_option = params["input_options"]["column_selector_options_1"][ |
| 71 "selected_column_selector_option" | |
| 72 ] | |
| 72 if column_option in [ | 73 if column_option in [ |
| 73 "by_index_number", | 74 "by_index_number", |
| 74 "all_but_by_index_number", | 75 "all_but_by_index_number", |
| 75 "by_header_name", | 76 "by_header_name", |
| 76 "all_but_by_header_name", | 77 "all_but_by_header_name", |
| 88 elif input_type == "sparse": | 89 elif input_type == "sparse": |
| 89 X = mmread(open(infile1, "r")) | 90 X = mmread(open(infile1, "r")) |
| 90 | 91 |
| 91 # Get target y | 92 # Get target y |
| 92 header = "infer" if params["input_options"]["header2"] else None | 93 header = "infer" if params["input_options"]["header2"] else None |
| 93 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] | 94 column_option = params["input_options"]["column_selector_options_2"][ |
| 95 "selected_column_selector_option2" | |
| 96 ] | |
| 94 if column_option in [ | 97 if column_option in [ |
| 95 "by_index_number", | 98 "by_index_number", |
| 96 "all_but_by_index_number", | 99 "all_but_by_index_number", |
| 97 "by_header_name", | 100 "by_header_name", |
| 98 "all_but_by_header_name", | 101 "all_but_by_header_name", |
| 106 infile2 = loaded_df[df_key] | 109 infile2 = loaded_df[df_key] |
| 107 else: | 110 else: |
| 108 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | 111 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
| 109 loaded_df[df_key] = infile2 | 112 loaded_df[df_key] = infile2 |
| 110 | 113 |
| 111 y = read_columns(infile2, | 114 y = read_columns( |
| 112 c=c, | 115 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True |
| 113 c_option=column_option, | 116 ) |
| 114 sep='\t', | |
| 115 header=header, | |
| 116 parse_dates=True) | |
| 117 if len(y.shape) == 2 and y.shape[1] == 1: | 117 if len(y.shape) == 2 and y.shape[1] == 1: |
| 118 y = y.ravel() | 118 y = y.ravel() |
| 119 | 119 |
| 120 return X, y | 120 return X, y |
| 121 | 121 |
