Mercurial > repos > bgruening > keras_batch_models
comparison keras_train_and_eval.py @ 5:79efb5472c2e draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
| author | bgruening |
|---|---|
| date | Mon, 16 Dec 2019 09:47:30 +0000 |
| parents | |
| children | 8edfc7381344 |
comparison
equal
deleted
inserted
replaced
| 4:ca0719aa1de3 | 5:79efb5472c2e |
|---|---|
| 1 import argparse | |
| 2 import joblib | |
| 3 import json | |
| 4 import numpy as np | |
| 5 import os | |
| 6 import pandas as pd | |
| 7 import pickle | |
| 8 import warnings | |
| 9 from itertools import chain | |
| 10 from scipy.io import mmread | |
| 11 from sklearn.pipeline import Pipeline | |
| 12 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 13 from sklearn import model_selection | |
| 14 from sklearn.model_selection._validation import _score | |
| 15 from sklearn.model_selection import _search, _validation | |
| 16 from sklearn.utils import indexable, safe_indexing | |
| 17 | |
| 18 from galaxy_ml.externals.selene_sdk.utils import compute_score | |
| 19 from galaxy_ml.model_validations import train_test_split | |
| 20 from galaxy_ml.keras_galaxy_models import _predict_generator | |
| 21 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | |
| 22 read_columns, try_get_attr, get_module, | |
| 23 clean_params, get_main_estimator) | |
| 24 | |
| 25 | |
| 26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
| 27 setattr(_search, '_fit_and_score', _fit_and_score) | |
| 28 setattr(_validation, '_fit_and_score', _fit_and_score) | |
| 29 | |
| 30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
| 31 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
| 32 del os | |
| 33 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
| 34 'nthread', 'callbacks') | |
| 35 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
| 36 'CSVLogger', 'None') | |
| 37 | |
| 38 | |
| 39 def _eval_swap_params(params_builder): | |
| 40 swap_params = {} | |
| 41 | |
| 42 for p in params_builder['param_set']: | |
| 43 swap_value = p['sp_value'].strip() | |
| 44 if swap_value == '': | |
| 45 continue | |
| 46 | |
| 47 param_name = p['sp_name'] | |
| 48 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 49 warnings.warn("Warning: `%s` is not eligible for search and was " | |
| 50 "omitted!" % param_name) | |
| 51 continue | |
| 52 | |
| 53 if not swap_value.startswith(':'): | |
| 54 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 55 ev = safe_eval(swap_value) | |
| 56 else: | |
| 57 # Have `:` before search list, asks for estimator evaluatio | |
| 58 safe_eval_es = SafeEval(load_estimators=True) | |
| 59 swap_value = swap_value[1:].strip() | |
| 60 # TODO maybe add regular express check | |
| 61 ev = safe_eval_es(swap_value) | |
| 62 | |
| 63 swap_params[param_name] = ev | |
| 64 | |
| 65 return swap_params | |
| 66 | |
| 67 | |
| 68 def train_test_split_none(*arrays, **kwargs): | |
| 69 """extend train_test_split to take None arrays | |
| 70 and support split by group names. | |
| 71 """ | |
| 72 nones = [] | |
| 73 new_arrays = [] | |
| 74 for idx, arr in enumerate(arrays): | |
| 75 if arr is None: | |
| 76 nones.append(idx) | |
| 77 else: | |
| 78 new_arrays.append(arr) | |
| 79 | |
| 80 if kwargs['shuffle'] == 'None': | |
| 81 kwargs['shuffle'] = None | |
| 82 | |
| 83 group_names = kwargs.pop('group_names', None) | |
| 84 | |
| 85 if group_names is not None and group_names.strip(): | |
| 86 group_names = [name.strip() for name in | |
| 87 group_names.split(',')] | |
| 88 new_arrays = indexable(*new_arrays) | |
| 89 groups = kwargs['labels'] | |
| 90 n_samples = new_arrays[0].shape[0] | |
| 91 index_arr = np.arange(n_samples) | |
| 92 test = index_arr[np.isin(groups, group_names)] | |
| 93 train = index_arr[~np.isin(groups, group_names)] | |
| 94 rval = list(chain.from_iterable( | |
| 95 (safe_indexing(a, train), | |
| 96 safe_indexing(a, test)) for a in new_arrays)) | |
| 97 else: | |
| 98 rval = train_test_split(*new_arrays, **kwargs) | |
| 99 | |
| 100 for pos in nones: | |
| 101 rval[pos * 2: 2] = [None, None] | |
| 102 | |
| 103 return rval | |
| 104 | |
| 105 | |
| 106 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | |
| 107 """ output scores based on input scorer | |
| 108 | |
| 109 Parameters | |
| 110 ---------- | |
| 111 y_true : array | |
| 112 True label or target values | |
| 113 pred_probas : array | |
| 114 Prediction values, probability for classification problem | |
| 115 scorer : dict | |
| 116 dict of `sklearn.metrics.scorer.SCORER` | |
| 117 is_multimetric : bool, default is True | |
| 118 """ | |
| 119 if y_true.ndim == 1 or y_true.shape[-1] == 1: | |
| 120 pred_probas = pred_probas.ravel() | |
| 121 pred_labels = (pred_probas > 0.5).astype('int32') | |
| 122 targets = y_true.ravel().astype('int32') | |
| 123 if not is_multimetric: | |
| 124 preds = pred_labels if scorer.__class__.__name__ == \ | |
| 125 '_PredictScorer' else pred_probas | |
| 126 score = scorer._score_func(targets, preds, **scorer._kwargs) | |
| 127 | |
| 128 return score | |
| 129 else: | |
| 130 scores = {} | |
| 131 for name, one_scorer in scorer.items(): | |
| 132 preds = pred_labels if one_scorer.__class__.__name__\ | |
| 133 == '_PredictScorer' else pred_probas | |
| 134 score = one_scorer._score_func(targets, preds, | |
| 135 **one_scorer._kwargs) | |
| 136 scores[name] = score | |
| 137 | |
| 138 # TODO: multi-class metrics | |
| 139 # multi-label | |
| 140 else: | |
| 141 pred_labels = (pred_probas > 0.5).astype('int32') | |
| 142 targets = y_true.astype('int32') | |
| 143 if not is_multimetric: | |
| 144 preds = pred_labels if scorer.__class__.__name__ == \ | |
| 145 '_PredictScorer' else pred_probas | |
| 146 score, _ = compute_score(preds, targets, | |
| 147 scorer._score_func) | |
| 148 return score | |
| 149 else: | |
| 150 scores = {} | |
| 151 for name, one_scorer in scorer.items(): | |
| 152 preds = pred_labels if one_scorer.__class__.__name__\ | |
| 153 == '_PredictScorer' else pred_probas | |
| 154 score, _ = compute_score(preds, targets, | |
| 155 one_scorer._score_func) | |
| 156 scores[name] = score | |
| 157 | |
| 158 return scores | |
| 159 | |
| 160 | |
| 161 def main(inputs, infile_estimator, infile1, infile2, | |
| 162 outfile_result, outfile_object=None, | |
| 163 outfile_weights=None, outfile_y_true=None, | |
| 164 outfile_y_preds=None, groups=None, | |
| 165 ref_seq=None, intervals=None, targets=None, | |
| 166 fasta_path=None): | |
| 167 """ | |
| 168 Parameter | |
| 169 --------- | |
| 170 inputs : str | |
| 171 File path to galaxy tool parameter | |
| 172 | |
| 173 infile_estimator : str | |
| 174 File path to estimator | |
| 175 | |
| 176 infile1 : str | |
| 177 File path to dataset containing features | |
| 178 | |
| 179 infile2 : str | |
| 180 File path to dataset containing target values | |
| 181 | |
| 182 outfile_result : str | |
| 183 File path to save the results, either cv_results or test result | |
| 184 | |
| 185 outfile_object : str, optional | |
| 186 File path to save searchCV object | |
| 187 | |
| 188 outfile_weights : str, optional | |
| 189 File path to save deep learning model weights | |
| 190 | |
| 191 outfile_y_true : str, optional | |
| 192 File path to target values for prediction | |
| 193 | |
| 194 outfile_y_preds : str, optional | |
| 195 File path to save deep learning model weights | |
| 196 | |
| 197 groups : str | |
| 198 File path to dataset containing groups labels | |
| 199 | |
| 200 ref_seq : str | |
| 201 File path to dataset containing genome sequence file | |
| 202 | |
| 203 intervals : str | |
| 204 File path to dataset containing interval file | |
| 205 | |
| 206 targets : str | |
| 207 File path to dataset compressed target bed file | |
| 208 | |
| 209 fasta_path : str | |
| 210 File path to dataset containing fasta file | |
| 211 """ | |
| 212 warnings.simplefilter('ignore') | |
| 213 | |
| 214 with open(inputs, 'r') as param_handler: | |
| 215 params = json.load(param_handler) | |
| 216 | |
| 217 # load estimator | |
| 218 with open(infile_estimator, 'rb') as estimator_handler: | |
| 219 estimator = load_model(estimator_handler) | |
| 220 | |
| 221 estimator = clean_params(estimator) | |
| 222 | |
| 223 # swap hyperparameter | |
| 224 swapping = params['experiment_schemes']['hyperparams_swapping'] | |
| 225 swap_params = _eval_swap_params(swapping) | |
| 226 estimator.set_params(**swap_params) | |
| 227 | |
| 228 estimator_params = estimator.get_params() | |
| 229 | |
| 230 # store read dataframe object | |
| 231 loaded_df = {} | |
| 232 | |
| 233 input_type = params['input_options']['selected_input'] | |
| 234 # tabular input | |
| 235 if input_type == 'tabular': | |
| 236 header = 'infer' if params['input_options']['header1'] else None | |
| 237 column_option = (params['input_options']['column_selector_options_1'] | |
| 238 ['selected_column_selector_option']) | |
| 239 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 240 'by_header_name', 'all_but_by_header_name']: | |
| 241 c = params['input_options']['column_selector_options_1']['col1'] | |
| 242 else: | |
| 243 c = None | |
| 244 | |
| 245 df_key = infile1 + repr(header) | |
| 246 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 247 parse_dates=True) | |
| 248 loaded_df[df_key] = df | |
| 249 | |
| 250 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 251 # sparse input | |
| 252 elif input_type == 'sparse': | |
| 253 X = mmread(open(infile1, 'r')) | |
| 254 | |
| 255 # fasta_file input | |
| 256 elif input_type == 'seq_fasta': | |
| 257 pyfaidx = get_module('pyfaidx') | |
| 258 sequences = pyfaidx.Fasta(fasta_path) | |
| 259 n_seqs = len(sequences.keys()) | |
| 260 X = np.arange(n_seqs)[:, np.newaxis] | |
| 261 for param in estimator_params.keys(): | |
| 262 if param.endswith('fasta_path'): | |
| 263 estimator.set_params( | |
| 264 **{param: fasta_path}) | |
| 265 break | |
| 266 else: | |
| 267 raise ValueError( | |
| 268 "The selected estimator doesn't support " | |
| 269 "fasta file input! Please consider using " | |
| 270 "KerasGBatchClassifier with " | |
| 271 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 272 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 273 "in pipeline!") | |
| 274 | |
| 275 elif input_type == 'refseq_and_interval': | |
| 276 path_params = { | |
| 277 'data_batch_generator__ref_genome_path': ref_seq, | |
| 278 'data_batch_generator__intervals_path': intervals, | |
| 279 'data_batch_generator__target_path': targets | |
| 280 } | |
| 281 estimator.set_params(**path_params) | |
| 282 n_intervals = sum(1 for line in open(intervals)) | |
| 283 X = np.arange(n_intervals)[:, np.newaxis] | |
| 284 | |
| 285 # Get target y | |
| 286 header = 'infer' if params['input_options']['header2'] else None | |
| 287 column_option = (params['input_options']['column_selector_options_2'] | |
| 288 ['selected_column_selector_option2']) | |
| 289 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 290 'by_header_name', 'all_but_by_header_name']: | |
| 291 c = params['input_options']['column_selector_options_2']['col2'] | |
| 292 else: | |
| 293 c = None | |
| 294 | |
| 295 df_key = infile2 + repr(header) | |
| 296 if df_key in loaded_df: | |
| 297 infile2 = loaded_df[df_key] | |
| 298 else: | |
| 299 infile2 = pd.read_csv(infile2, sep='\t', | |
| 300 header=header, parse_dates=True) | |
| 301 loaded_df[df_key] = infile2 | |
| 302 | |
| 303 y = read_columns( | |
| 304 infile2, | |
| 305 c=c, | |
| 306 c_option=column_option, | |
| 307 sep='\t', | |
| 308 header=header, | |
| 309 parse_dates=True) | |
| 310 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 311 y = y.ravel() | |
| 312 if input_type == 'refseq_and_interval': | |
| 313 estimator.set_params( | |
| 314 data_batch_generator__features=y.ravel().tolist()) | |
| 315 y = None | |
| 316 # end y | |
| 317 | |
| 318 # load groups | |
| 319 if groups: | |
| 320 groups_selector = (params['experiment_schemes']['test_split'] | |
| 321 ['split_algos']).pop('groups_selector') | |
| 322 | |
| 323 header = 'infer' if groups_selector['header_g'] else None | |
| 324 column_option = \ | |
| 325 (groups_selector['column_selector_options_g'] | |
| 326 ['selected_column_selector_option_g']) | |
| 327 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 328 'by_header_name', 'all_but_by_header_name']: | |
| 329 c = groups_selector['column_selector_options_g']['col_g'] | |
| 330 else: | |
| 331 c = None | |
| 332 | |
| 333 df_key = groups + repr(header) | |
| 334 if df_key in loaded_df: | |
| 335 groups = loaded_df[df_key] | |
| 336 | |
| 337 groups = read_columns( | |
| 338 groups, | |
| 339 c=c, | |
| 340 c_option=column_option, | |
| 341 sep='\t', | |
| 342 header=header, | |
| 343 parse_dates=True) | |
| 344 groups = groups.ravel() | |
| 345 | |
| 346 # del loaded_df | |
| 347 del loaded_df | |
| 348 | |
| 349 # cache iraps_core fits could increase search speed significantly | |
| 350 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 351 main_est = get_main_estimator(estimator) | |
| 352 if main_est.__class__.__name__ == 'IRAPSClassifier': | |
| 353 main_est.set_params(memory=memory) | |
| 354 | |
| 355 # handle scorer, convert to scorer dict | |
| 356 scoring = params['experiment_schemes']['metrics']['scoring'] | |
| 357 scorer = get_scoring(scoring) | |
| 358 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
| 359 | |
| 360 # handle test (first) split | |
| 361 test_split_options = (params['experiment_schemes'] | |
| 362 ['test_split']['split_algos']) | |
| 363 | |
| 364 if test_split_options['shuffle'] == 'group': | |
| 365 test_split_options['labels'] = groups | |
| 366 if test_split_options['shuffle'] == 'stratified': | |
| 367 if y is not None: | |
| 368 test_split_options['labels'] = y | |
| 369 else: | |
| 370 raise ValueError("Stratified shuffle split is not " | |
| 371 "applicable on empty target values!") | |
| 372 | |
| 373 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | |
| 374 train_test_split_none(X, y, groups, **test_split_options) | |
| 375 | |
| 376 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | |
| 377 | |
| 378 # handle validation (second) split | |
| 379 if exp_scheme == 'train_val_test': | |
| 380 val_split_options = (params['experiment_schemes'] | |
| 381 ['val_split']['split_algos']) | |
| 382 | |
| 383 if val_split_options['shuffle'] == 'group': | |
| 384 val_split_options['labels'] = groups_train | |
| 385 if val_split_options['shuffle'] == 'stratified': | |
| 386 if y_train is not None: | |
| 387 val_split_options['labels'] = y_train | |
| 388 else: | |
| 389 raise ValueError("Stratified shuffle split is not " | |
| 390 "applicable on empty target values!") | |
| 391 | |
| 392 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | |
| 393 train_test_split_none(X_train, y_train, groups_train, | |
| 394 **val_split_options) | |
| 395 | |
| 396 # train and eval | |
| 397 if hasattr(estimator, 'validation_data'): | |
| 398 if exp_scheme == 'train_val_test': | |
| 399 estimator.fit(X_train, y_train, | |
| 400 validation_data=(X_val, y_val)) | |
| 401 else: | |
| 402 estimator.fit(X_train, y_train, | |
| 403 validation_data=(X_test, y_test)) | |
| 404 else: | |
| 405 estimator.fit(X_train, y_train) | |
| 406 | |
| 407 if hasattr(estimator, 'evaluate'): | |
| 408 steps = estimator.prediction_steps | |
| 409 batch_size = estimator.batch_size | |
| 410 generator = estimator.data_generator_.flow(X_test, y=y_test, | |
| 411 batch_size=batch_size) | |
| 412 predictions, y_true = _predict_generator(estimator.model_, generator, | |
| 413 steps=steps) | |
| 414 scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) | |
| 415 | |
| 416 else: | |
| 417 if hasattr(estimator, 'predict_proba'): | |
| 418 predictions = estimator.predict_proba(X_test) | |
| 419 else: | |
| 420 predictions = estimator.predict(X_test) | |
| 421 | |
| 422 y_true = y_test | |
| 423 scores = _score(estimator, X_test, y_test, scorer, | |
| 424 is_multimetric=True) | |
| 425 if outfile_y_true: | |
| 426 try: | |
| 427 pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', | |
| 428 index=False) | |
| 429 pd.DataFrame(predictions).astype(np.float32).to_csv( | |
| 430 outfile_y_preds, sep='\t', index=False, | |
| 431 float_format='%g', chunksize=10000) | |
| 432 except Exception as e: | |
| 433 print("Error in saving predictions: %s" % e) | |
| 434 | |
| 435 # handle output | |
| 436 for name, score in scores.items(): | |
| 437 scores[name] = [score] | |
| 438 df = pd.DataFrame(scores) | |
| 439 df = df[sorted(df.columns)] | |
| 440 df.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 441 header=True, index=False) | |
| 442 | |
| 443 memory.clear(warn=False) | |
| 444 | |
| 445 if outfile_object: | |
| 446 main_est = estimator | |
| 447 if isinstance(estimator, Pipeline): | |
| 448 main_est = estimator.steps[-1][-1] | |
| 449 | |
| 450 if hasattr(main_est, 'model_') \ | |
| 451 and hasattr(main_est, 'save_weights'): | |
| 452 if outfile_weights: | |
| 453 main_est.save_weights(outfile_weights) | |
| 454 del main_est.model_ | |
| 455 del main_est.fit_params | |
| 456 del main_est.model_class_ | |
| 457 del main_est.validation_data | |
| 458 if getattr(main_est, 'data_generator_', None): | |
| 459 del main_est.data_generator_ | |
| 460 | |
| 461 with open(outfile_object, 'wb') as output_handler: | |
| 462 pickle.dump(estimator, output_handler, | |
| 463 pickle.HIGHEST_PROTOCOL) | |
| 464 | |
| 465 | |
| 466 if __name__ == '__main__': | |
| 467 aparser = argparse.ArgumentParser() | |
| 468 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 469 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 470 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 471 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 472 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 473 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 474 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 475 aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") | |
| 476 aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") | |
| 477 aparser.add_argument("-g", "--groups", dest="groups") | |
| 478 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 479 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 480 aparser.add_argument("-t", "--targets", dest="targets") | |
| 481 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 482 args = aparser.parse_args() | |
| 483 | |
| 484 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
| 485 args.outfile_result, outfile_object=args.outfile_object, | |
| 486 outfile_weights=args.outfile_weights, | |
| 487 outfile_y_true=args.outfile_y_true, | |
| 488 outfile_y_preds=args.outfile_y_preds, | |
| 489 groups=args.groups, | |
| 490 ref_seq=args.ref_seq, intervals=args.intervals, | |
| 491 targets=args.targets, fasta_path=args.fasta_path) |
