Mercurial > repos > bgruening > keras_batch_models
comparison association_rules.py @ 11:508cf7278239 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
| author | bgruening |
|---|---|
| date | Sat, 01 May 2021 00:13:36 +0000 |
| parents | |
| children | 70846a2dd227 |
comparison
equal
deleted
inserted
replaced
| 10:33af12059f42 | 11:508cf7278239 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import warnings | |
| 4 | |
| 5 import pandas as pd | |
| 6 from mlxtend.frequent_patterns import association_rules, fpgrowth | |
| 7 from mlxtend.preprocessing import TransactionEncoder | |
| 8 | |
| 9 | |
| 10 def main(inputs, infile, outfile, min_support=0.5, min_confidence=0.5, min_lift=1.0, min_conviction=1.0, max_length=None): | |
| 11 """ | |
| 12 Parameter | |
| 13 --------- | |
| 14 input : str | |
| 15 File path to galaxy tool parameter | |
| 16 | |
| 17 infile : str | |
| 18 File paths of input vector | |
| 19 | |
| 20 outfile : str | |
| 21 File path to output matrix | |
| 22 | |
| 23 min_support: float | |
| 24 Minimum support | |
| 25 | |
| 26 min_confidence: float | |
| 27 Minimum confidence | |
| 28 | |
| 29 min_lift: float | |
| 30 Minimum lift | |
| 31 | |
| 32 min_conviction: float | |
| 33 Minimum conviction | |
| 34 | |
| 35 max_length: int | |
| 36 Maximum length | |
| 37 | |
| 38 """ | |
| 39 warnings.simplefilter('ignore') | |
| 40 | |
| 41 with open(inputs, 'r') as param_handler: | |
| 42 params = json.load(param_handler) | |
| 43 | |
| 44 input_header = params['header0'] | |
| 45 header = 'infer' if input_header else None | |
| 46 | |
| 47 with open(infile) as fp: | |
| 48 lines = fp.read().splitlines() | |
| 49 | |
| 50 if header is not None: | |
| 51 lines = lines[1:] | |
| 52 | |
| 53 dataset = [] | |
| 54 for line in lines: | |
| 55 line_items = line.split("\t") | |
| 56 dataset.append(line_items) | |
| 57 | |
| 58 # TransactionEncoder learns the unique labels in the dataset and transforms the | |
| 59 # input dataset (a Python list of lists) into a one-hot encoded NumPy boolean array | |
| 60 te = TransactionEncoder() | |
| 61 te_ary = te.fit_transform(dataset) | |
| 62 | |
| 63 # Turn the encoded NumPy array into a DataFrame | |
| 64 df = pd.DataFrame(te_ary, columns=te.columns_) | |
| 65 | |
| 66 # Extract frequent itemsets for association rule mining | |
| 67 # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices | |
| 68 frequent_itemsets = fpgrowth(df, min_support=min_support, use_colnames=True, max_len=max_length) | |
| 69 | |
| 70 # Get association rules, with confidence larger than min_confidence | |
| 71 rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=min_confidence) | |
| 72 | |
| 73 # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction | |
| 74 rules = rules[(rules['lift'] >= min_lift) & (rules['conviction'] >= min_conviction)] | |
| 75 | |
| 76 # Convert columns from frozenset to list (more readable) | |
| 77 rules['antecedents'] = rules['antecedents'].apply(list) | |
| 78 rules['consequents'] = rules['consequents'].apply(list) | |
| 79 | |
| 80 # The next 3 steps are intended to fix the order of the association | |
| 81 # rules generated, so tests that rely on diff'ing a desired output | |
| 82 # with an expected output can pass | |
| 83 | |
| 84 # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' | |
| 85 rules['antecedents'] = rules['antecedents'].apply(lambda row: sorted(row)) | |
| 86 rules['consequents'] = rules['consequents'].apply(lambda row: sorted(row)) | |
| 87 | |
| 88 # 2) Create two temporary string columns to sort on | |
| 89 rules['ant_str'] = rules['antecedents'].apply(lambda row: " ".join(row)) | |
| 90 rules['con_str'] = rules['consequents'].apply(lambda row: " ".join(row)) | |
| 91 | |
| 92 # 3) Sort results so they are re-producable | |
| 93 rules.sort_values(by=['ant_str', 'con_str'], inplace=True) | |
| 94 del rules['ant_str'] | |
| 95 del rules['con_str'] | |
| 96 rules.reset_index(drop=True, inplace=True) | |
| 97 | |
| 98 # Write association rules and metrics to file | |
| 99 rules.to_csv(outfile, sep="\t", index=False) | |
| 100 | |
| 101 | |
| 102 if __name__ == '__main__': | |
| 103 aparser = argparse.ArgumentParser() | |
| 104 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 105 aparser.add_argument("-y", "--infile", dest="infile", required=True) | |
| 106 aparser.add_argument("-o", "--outfile", dest="outfile", required=True) | |
| 107 aparser.add_argument("-s", "--support", dest="support", default=0.5) | |
| 108 aparser.add_argument("-c", "--confidence", dest="confidence", default=0.5) | |
| 109 aparser.add_argument("-l", "--lift", dest="lift", default=1.0) | |
| 110 aparser.add_argument("-v", "--conviction", dest="conviction", default=1.0) | |
| 111 aparser.add_argument("-t", "--length", dest="length", default=5) | |
| 112 args = aparser.parse_args() | |
| 113 | |
| 114 main(args.inputs, args.infile, args.outfile, | |
| 115 min_support=float(args.support), min_confidence=float(args.confidence), | |
| 116 min_lift=float(args.lift), min_conviction=float(args.conviction), max_length=int(args.length)) |
