Mercurial > repos > bgruening > eden_toolbox
diff EDeN_train.xml @ 0:99091a5d5c84 draft
Uploaded
| author | bgruening |
|---|---|
| date | Wed, 04 Sep 2013 05:10:04 -0400 |
| parents | |
| children | a3edc97e056c |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/EDeN_train.xml Wed Sep 04 05:10:04 2013 -0400 @@ -0,0 +1,87 @@ +<tool id="bg_eden_train" name="EDeN Train" version="0.1"> + <description></description> + <requirements> + </requirements> + <command> + EDeN --action TRAIN + + --input_data_file_name $infile + --file_type "SPARSE_VECTOR" + --binary_file_type + + ## TODO: we need a tool that creates such a file, maybe from the metadata of an SDF file + ## target_file_name is a file with 1 or -1 one in each row, indicating the class + --target_file_name $target_infile + --model_file_name $model_outfile + + --lambda $lambda ##??? notation? + --epochs $epoch + + --sparsification_num_iterations $sparsification_num_iterations + --topological_regularization_num_neighbors $topological_regularization_num_neighbors + --topological_regularization_decay_rate $topological_regularization_decay_rate + + --num_iterations $num_iterations + --threshold $threshold + --only_positive $only_positive + --only_negative $only_negative + + --random_seed $random_seed + + </command> + <inputs> + <param format="eden_sparse_vector" name="infile" type="data" label="Input Graph" help=""/> + <param format="txt" name="target_infile" type="data" label="Target file" help=""/> + + <param name="kernel_type" type="select" display="radio" label="Type of the Kernel"> + <option value="NSPDK">NSPDK</option> + <option value="WDK">WDK</option> + <option value="PBK">PBK</option> + <option value="USPK">USPK</option> + <option value="DDK">DDK</option> + <option value="NSDDK">ANSDDK</option> + <option value="SK">SK [NSPDK]</option> + </param> + + <param name="graph_type" type="select" display="radio" label="Type of Graph"> + <option value="DIRECTED">directed</option> + <option value="UNDIRECTED">undirected</option> + </param> + + <param name="epoch" type="integer" value="10" label="Epoch, Stochastic gradient descend algorithm." help=""> + <validator type="in_range" min="1" /> + </param> + <param name="lambda" type="text" value="1e-4" label="lambda, Stochastic gradient descend algorithm." help="" /> + + </inputs> + <outputs> + <data format="txt" name="model_outfile" label="Train Model from ${on_string}"/> + </outputs> + <tests> + <test> + <param name="infile" value="3_molceuls.sdf" /> + <output name="outfile" file="3_molecules.gspan" /> + </test> + </tests> + <help> + +.. class:: infomark + +**What it does** + +The linear model is induced using the accelerated stochastic gradient descent technique by Léon Bottou and Yann LeCun. +When the target information is 0, a self-training algorithm is used to impute a positive or negative class to the unsupervised instances. +If the target information is imbalanced a minority class resampling technique is used to rebalance the training set. + +This tool is part of the EDeN (Explicit Decomposition with Neighborhoods) suite, developed by Fabrizio Costa. + + +REFERENCES +========== + +The code for Stochastic Gradient Descent SVM is adapted from http://leon.bottou.org/projects/sgd. Léon Bottou and Yann LeCun, ''Large Scale Online Learning'', Advances in Neural Information Processing Systems 16, Edited by Sebastian Thrun, Lawrence Saul and Bernhard Schölkopf, MIT Press, Cambridge, MA, 2004. + + + + </help> +</tool>
