Mercurial > repos > bgruening > deeptools_plot_correlation
view plotCorrelation.xml @ 0:b0050909cf03 draft
planemo upload for repository https://github.com/fidelram/deepTools/tree/master/galaxy/wrapper/ commit e1fd513c18e0d5b53071d99f539ac3509ced01aa-dirty
author | bgruening |
---|---|
date | Wed, 16 Dec 2015 16:39:47 -0500 |
parents | |
children | c5634baf9bf9 |
line wrap: on
line source
<tool id="deeptools_plot_correlation" name="plotCorrelation" version="@WRAPPER_VERSION@.0"> <description>creates a heatmap for a score associated to genomic regions</description> <macros> <token name="@BINARY@">plotCorrelation</token> <import>deepTools_macros.xml</import> </macros> <expand macro="requirements"/> <command> <![CDATA[ @BINARY@ --corData "$corData" --plotFile "$outFileName" --corMethod "$corMethod" --whatToPlot "$whatToPlot" $skipZeros --plotFileFormat "$outFileFormat" $removeOutliers --outFileCorMatrix "$matrix" @HEATMAP_OPTIONS@ ]]> </command> <inputs> <param name="corData" format="deeptools_coverage_matrix" type="data" label="Matrix file from the bamCorrelate tool"/> <expand macro="corMethod" /> <param argument="--whatToPlot" type="select" label="Plotting type"> <option value="heatmap" selected="True">Spearman</option> <option value="scatterplot">Pearson</option> </param> <expand macro="skipZeros" /> <expand macro="image_file_format" /> <param argument="--removeOutliers" type="boolean" truevalue="--removeOutliers" falsevalue="" label="Remove regions with very large counts" help="If set, bins with very large counts are removed. Bins with abnormally high reads counts artificially increase pearson correlation; that's why, by default, bamCorrelate tries to remove outliers using the median absolute deviation (MAD) method applying a threshold of 200 to only consider extremely large deviations from the median. ENCODE blacklist page (https://sites. google.com/site/anshulkundaje/projects/blacklists) contains useful information about regions with unusually high counts."/> <param name="outFileCorMatrix" type="boolean" label="Save the matrix of values underlying the heatmap"/> <expand macro="heatmap_options" /> </inputs> <outputs> <expand macro="output_image_file_format" /> <data format="tabular" name="matrix" label="${tool.name} on ${on_string}: Correlation matrix"> <filter>outFileCorMatrix is True</filter> </data> </outputs> <tests> <test> <param name="corData" value="bamCorrelate_result1.npz" ftype="deeptools_coverage_matrix" /> <param name="outFileFormat" value="png" /> <param name="outFileCorMatrix" value="True" /> <output name="matrix" file="plotCorrelation_result1.tabular" ftype="tabular" /> <output name="outFileName" file="plotCorrelation_result1.png" ftype="png" compare="sim_size" delta="100" /> </test> <test> <param name="corData" value="bamCorrelate_result1.npz" ftype="deeptools_coverage_matrix" /> <param name="outFileFormat" value="png" /> <param name="whatToPlot" value="scatterplot" /> <param name="removeOutliers" value="True" /> <param name="plotTitle" value="Test Plot" /> <output name="outFileName" file="plotCorrelation_result2.png" compare="sim_size" delta="100" /> </test> </tests> <help> <![CDATA[ **What it does** Tool for visualizing a correlation using either bamCorrelate or bigwigCorrelate. Pearson or Spearman methods are available to compute correlation coefficients. Results can be saved into a heat map image or as multiple scatter plots. Further output files are optional. ----- @REFERENCES@ ]]> </help> <expand macro="citations" /> </tool>