Mercurial > repos > bgruening > create_tool_recommendation_model
diff main.py @ 2:50753817983a draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/tool_recommendation_model commit c635df659fe1835679438589ded43136b0e515c6"
author | bgruening |
---|---|
date | Sat, 09 May 2020 09:38:04 +0000 |
parents | 275e98795e99 |
children | 98bc44d17561 |
line wrap: on
line diff
--- a/main.py Wed Sep 25 06:42:18 2019 -0400 +++ b/main.py Sat May 09 09:38:04 2020 +0000 @@ -8,6 +8,8 @@ import time # machine learning library +import tensorflow as tf +from keras import backend as K import keras.callbacks as callbacks import extract_workflow_connections @@ -18,78 +20,101 @@ class PredictTool: - @classmethod - def __init__(self): + def __init__(self, num_cpus): """ Init method. """ + # set the number of cpus + cpu_config = tf.ConfigProto( + device_count={"CPU": num_cpus}, + intra_op_parallelism_threads=num_cpus, + inter_op_parallelism_threads=num_cpus, + allow_soft_placement=True + ) + K.set_session(tf.Session(config=cpu_config)) - @classmethod - def find_train_best_network(self, network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, compatible_next_tools): + def find_train_best_network(self, network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, standard_connections, l_tool_freq, l_tool_tr_samples): """ Define recurrent neural network and train sequential data """ + # get tools with lowest representation + lowest_tool_ids = utils.get_lowest_tools(l_tool_freq) + print("Start hyperparameter optimisation...") hyper_opt = optimise_hyperparameters.HyperparameterOptimisation() - best_params = hyper_opt.train_model(network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, class_weights) - - # retrieve the model and train on complete dataset without validation set - model, best_params = utils.set_recurrent_network(best_params, reverse_dictionary, class_weights) + best_params, best_model = hyper_opt.train_model(network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, l_tool_tr_samples, class_weights) # define callbacks - predict_callback_test = PredictCallback(test_data, test_labels, reverse_dictionary, n_epochs, compatible_next_tools, usage_pred) - # tensor_board = callbacks.TensorBoard(log_dir=log_directory, histogram_freq=0, write_graph=True, write_images=True) - callbacks_list = [predict_callback_test] + early_stopping = callbacks.EarlyStopping(monitor='loss', mode='min', verbose=1, min_delta=1e-1, restore_best_weights=True) + predict_callback_test = PredictCallback(test_data, test_labels, reverse_dictionary, n_epochs, usage_pred, standard_connections, lowest_tool_ids) + + callbacks_list = [predict_callback_test, early_stopping] + + batch_size = int(best_params["batch_size"]) print("Start training on the best model...") - model_fit = model.fit( - train_data, - train_labels, - batch_size=int(best_params["batch_size"]), + train_performance = dict() + trained_model = best_model.fit_generator( + utils.balanced_sample_generator( + train_data, + train_labels, + batch_size, + l_tool_tr_samples + ), + steps_per_epoch=len(train_data) // batch_size, epochs=n_epochs, + callbacks=callbacks_list, + validation_data=(test_data, test_labels), verbose=2, - callbacks=callbacks_list, - shuffle="batch", - validation_data=(test_data, test_labels) + shuffle=True ) - - train_performance = { - "train_loss": np.array(model_fit.history["loss"]), - "model": model, - "best_parameters": best_params - } - - # if there is test data, add more information - if len(test_data) > 0: - train_performance["validation_loss"] = np.array(model_fit.history["val_loss"]) - train_performance["precision"] = predict_callback_test.precision - train_performance["usage_weights"] = predict_callback_test.usage_weights + train_performance["validation_loss"] = np.array(trained_model.history["val_loss"]) + train_performance["precision"] = predict_callback_test.precision + train_performance["usage_weights"] = predict_callback_test.usage_weights + train_performance["published_precision"] = predict_callback_test.published_precision + train_performance["lowest_pub_precision"] = predict_callback_test.lowest_pub_precision + train_performance["lowest_norm_precision"] = predict_callback_test.lowest_norm_precision + train_performance["train_loss"] = np.array(trained_model.history["loss"]) + train_performance["model"] = best_model + train_performance["best_parameters"] = best_params return train_performance class PredictCallback(callbacks.Callback): - def __init__(self, test_data, test_labels, reverse_data_dictionary, n_epochs, next_compatible_tools, usg_scores): + def __init__(self, test_data, test_labels, reverse_data_dictionary, n_epochs, usg_scores, standard_connections, lowest_tool_ids): self.test_data = test_data self.test_labels = test_labels self.reverse_data_dictionary = reverse_data_dictionary self.precision = list() self.usage_weights = list() + self.published_precision = list() self.n_epochs = n_epochs - self.next_compatible_tools = next_compatible_tools self.pred_usage_scores = usg_scores + self.standard_connections = standard_connections + self.lowest_tool_ids = lowest_tool_ids + self.lowest_pub_precision = list() + self.lowest_norm_precision = list() def on_epoch_end(self, epoch, logs={}): """ Compute absolute and compatible precision for test data """ if len(self.test_data) > 0: - precision, usage_weights = utils.verify_model(self.model, self.test_data, self.test_labels, self.reverse_data_dictionary, self.next_compatible_tools, self.pred_usage_scores) + usage_weights, precision, precision_pub, low_pub_prec, low_norm_prec, low_num = utils.verify_model(self.model, self.test_data, self.test_labels, self.reverse_data_dictionary, self.pred_usage_scores, self.standard_connections, self.lowest_tool_ids) self.precision.append(precision) self.usage_weights.append(usage_weights) - print("Epoch %d precision: %s" % (epoch + 1, precision)) + self.published_precision.append(precision_pub) + self.lowest_pub_precision.append(low_pub_prec) + self.lowest_norm_precision.append(low_norm_prec) print("Epoch %d usage weights: %s" % (epoch + 1, usage_weights)) + print("Epoch %d normal precision: %s" % (epoch + 1, precision)) + print("Epoch %d published precision: %s" % (epoch + 1, precision_pub)) + print("Epoch %d lowest published precision: %s" % (epoch + 1, low_pub_prec)) + print("Epoch %d lowest normal precision: %s" % (epoch + 1, low_norm_prec)) + print("Epoch %d number of test samples with lowest tool ids: %s" % (epoch + 1, low_num)) if __name__ == "__main__": start_time = time.time() + arg_parser = argparse.ArgumentParser() arg_parser.add_argument("-wf", "--workflow_file", required=True, help="workflows tabular file") arg_parser.add_argument("-tu", "--tool_usage_file", required=True, help="tool usage file") @@ -101,7 +126,6 @@ arg_parser.add_argument("-oe", "--optimize_n_epochs", required=True, help="number of iterations to run to find best model parameters") arg_parser.add_argument("-me", "--max_evals", required=True, help="maximum number of configuration evaluations") arg_parser.add_argument("-ts", "--test_share", required=True, help="share of data to be used for testing") - arg_parser.add_argument("-vs", "--validation_share", required=True, help="share of data to be used for validation") # neural network parameters arg_parser.add_argument("-bs", "--batch_size", required=True, help="size of the tranining batch i.e. the number of samples per batch") arg_parser.add_argument("-ut", "--units", required=True, help="number of hidden recurrent units") @@ -110,8 +134,7 @@ arg_parser.add_argument("-sd", "--spatial_dropout", required=True, help="1d dropout used for embedding layer") arg_parser.add_argument("-rd", "--recurrent_dropout", required=True, help="dropout for the recurrent layers") arg_parser.add_argument("-lr", "--learning_rate", required=True, help="learning rate") - arg_parser.add_argument("-ar", "--activation_recurrent", required=True, help="activation function for recurrent layers") - arg_parser.add_argument("-ao", "--activation_output", required=True, help="activation function for output layers") + # get argument values args = vars(arg_parser.parse_args()) tool_usage_path = args["tool_usage_file"] @@ -123,7 +146,6 @@ optimize_n_epochs = int(args["optimize_n_epochs"]) max_evals = int(args["max_evals"]) test_share = float(args["test_share"]) - validation_share = float(args["validation_share"]) batch_size = args["batch_size"] units = args["units"] embedding_size = args["embedding_size"] @@ -131,8 +153,7 @@ spatial_dropout = args["spatial_dropout"] recurrent_dropout = args["recurrent_dropout"] learning_rate = args["learning_rate"] - activation_recurrent = args["activation_recurrent"] - activation_output = args["activation_output"] + num_cpus = 16 config = { 'cutoff_date': cutoff_date, @@ -141,35 +162,28 @@ 'optimize_n_epochs': optimize_n_epochs, 'max_evals': max_evals, 'test_share': test_share, - 'validation_share': validation_share, 'batch_size': batch_size, 'units': units, 'embedding_size': embedding_size, 'dropout': dropout, 'spatial_dropout': spatial_dropout, 'recurrent_dropout': recurrent_dropout, - 'learning_rate': learning_rate, - 'activation_recurrent': activation_recurrent, - 'activation_output': activation_output + 'learning_rate': learning_rate } # Extract and process workflows connections = extract_workflow_connections.ExtractWorkflowConnections() - workflow_paths, compatible_next_tools = connections.read_tabular_file(workflows_path) + workflow_paths, compatible_next_tools, standard_connections = connections.read_tabular_file(workflows_path) # Process the paths from workflows print("Dividing data...") data = prepare_data.PrepareData(maximum_path_length, test_share) - train_data, train_labels, test_data, test_labels, data_dictionary, reverse_dictionary, class_weights, usage_pred = data.get_data_labels_matrices(workflow_paths, tool_usage_path, cutoff_date, compatible_next_tools) + train_data, train_labels, test_data, test_labels, data_dictionary, reverse_dictionary, class_weights, usage_pred, l_tool_freq, l_tool_tr_samples = data.get_data_labels_matrices(workflow_paths, tool_usage_path, cutoff_date, compatible_next_tools, standard_connections) # find the best model and start training - predict_tool = PredictTool() + predict_tool = PredictTool(num_cpus) # start training with weighted classes print("Training with weighted classes and samples ...") - results_weighted = predict_tool.find_train_best_network(config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, compatible_next_tools) - print() - print("Best parameters \n") - print(results_weighted["best_parameters"]) - print() - utils.save_model(results_weighted, data_dictionary, compatible_next_tools, trained_model_path, class_weights) + results_weighted = predict_tool.find_train_best_network(config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, standard_connections, l_tool_freq, l_tool_tr_samples) + utils.save_model(results_weighted, data_dictionary, compatible_next_tools, trained_model_path, class_weights, standard_connections) end_time = time.time() print() print("Program finished in %s seconds" % str(end_time - start_time))